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Abstract This paper reports new results on the analysis and control of discrete linear
repetitive processes which are a distinct class of 2D discrete linear systems of both
systems theoretic and applications interest. In particular, we first propose an exten-
sion to the basic state-space model to include a coupling term previously neglected
but which arises in some applications and then proceed to show how computationally
efficient control laws can be designed for this new model.

Keywords Repetitive dynamics · Stability · 1D equivalent model · Dynamics
decoupling · Iterative stabilization · LMIs

1 Introduction

The essential unique characteristic of a repetitive, or multipass, process is a series of
sweeps, termed passes, through a set of dynamics defined over a fixed finite duration
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known as the pass length. On each pass an output, termed the pass profile, is produced
which acts as a forcing function on, and hence contributes to, the dynamics of the next
pass profile. This, in turn, leads to the unique control problem in that the output
sequence of pass profiles generated can contain oscillations that increase in ampli-
tude in the pass-to-pass direction.

To introduce a formal definition, let α < +∞ denote the pass length (assumed
constant). Then in a repetitive process the pass profile yk(p), 0 ≤ p ≤ α−1, generated
on pass k acts as a forcing function on, and hence contributes to, the dynamics of the
next pass profile yk+1(p), 0 ≤ p ≤ α − 1, k ≥ 0.

Physical examples of repetitive processes include long-wall coal cutting and metal
rolling operations (Edwards, 1974). Also in recent years applications have arisen
where adopting a repetitive process setting for analysis has distinct advantages over
alternatives. Examples of these so-called algorithmic applications include classes of
iterative learning control (ILC) schemes (Owens, Amann, Rogers, & French, 2000)
and iterative algorithms for solving nonlinear dynamic optimal control problems based
on the maximum principle (Roberts, 2002). In the case of ILC for the linear dynam-
ics case, the stability theory for so-called differential and discrete linear repetitive
processes can be used to undertake a rigorous stability/convergence theory for a pow-
erful class of such algorithms. In particular, it makes explicit the link between error
convergence and along the trial dynamics in a manner which is not possible using, for
example, other 2D systems model structures, e.g. Kurek, & Zaremba (1993).

Attempts to control these processes using standard (or 1D) systems
theory/algorithms fail (except in a few very restrictive special cases) precisely be-
cause such an approach ignores the two features that define their inherent 2D systems
structure. These are information propagation from pass-to-pass (k direction) and
along a given pass (p direction) and resetting of the initial conditions before the start
of each new pass. In which context, it is known (Owens, & Rogers, 1999) that the
structure of these alone can cause instability.

In seeking a rigorous foundation on which to develop a control theory for these
processes, it is natural to attempt to exploit structural links which exist between, in
particular, the class of so-called discrete linear repetitive processes and 2D linear sys-
tems described by the extensively studied Roesser (1975) or Fornasini and Marchesini
(1978) state-space models. In fact, however, there are dynamics arising in repetitive
processes which have no Roesser or Fornasini–Marchesini model interpretations. For
example, it can happen that the previous pass profile is modified over its complete
duration before the production of the next pass profile begins, e.g. in long-wall coal
cutting where this so-called inter-pass smoothing is caused by the machines weight as
it it brought to rest on the new cut floor profile before the start of the new pass of
the coal face. Such dynamics cannot be included in a Roesser or Fornasini Marchesini
model setting and the novel results in this paper include how a discrete model of such
action can be accommodated in repetitive process analysis and control law design.

In common with a large range of other areas in systems theory, recent years has
seen the emergence of Linear Matrix Inequality (LMI) based techniques in the anal-
ysis of very important sub-classes of linear repetitive processes (see, e.g., Galkowski,
Rogers, Xu, Lam, & Owens, 2002; Galkowski, Paszke, Sulikowski, Rogers, & Owens,
2003). This has led to considerable success, especially in areas such as the structure
and design of control laws and stability in the presence physically relevant types of
uncertainty in the matrices of the defining state-space model, which have proved very
difficult/impossible to handle using other analysis tools. In particular, use of LMIs has
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led, unlike other currently available alternatives, to the development of stability tests
which also provide a basis for the design of physically meaningful control laws for both
stability and performance. Here we show how such tools can be used to great effect in
the control of the previously not considered repetitive process dynamics considered
in this paper.

Throughout this paper M > 0 (< 0) denotes a real symmetric positive (negative)
definite matrix.

2 Background

The state-space model of a so-called extended discrete linear repetitive process is
described by the following state-space model over 0 ≤ p ≤ α − 1, k ≥ 0,

xk+1(p + 1) = Axk+1(p) + Buk+1(p) +
α−1∑

j=0

Bjyk(j),

yk+1(p) = Cxk+1(p) + Duk+1(p) +
α−1∑

j=0

Djyk(j). (1)

Here on pass k, xk(p) is the n × 1 state vector, yk(p) is the m × 1 pass profile vector,
and uk(p) is the r × 1 vector of control inputs.

To complete the process description, it is necessary to specify the boundary con-
ditions, i.e. the state initial vector on each pass and the initial pass profile. Here no
loss of generality arises from assuming xk+1(0) = dk+1, k ≥ 0, where dk+1 is an m × 1
vector with known constant entries, and y0(p) = f (p), where f (p) is an m × 1 vector
whose entries are known functions of p over 0 ≤ p ≤ α − 1. For ease of presentation,
we will make no further reference to the boundary conditions in this paper.

Motivation for considering processes of the form (1) arises from applications where
the current pass profile at any point along the pass is a function of more than one
point on the previous pass. For example, in mining systems, the repetitive process
dynamics arise from the fact that, as the current pass profile is being produced, the
machine involved rests on the previous pass profile and once the end is reached it is
returned to the starting position and then ‘pushed over’ to rest on the newly produced
pass profile ready for the start of the next pass. Hence, it is clear that the complete
previous pass profile in this case will make a significant contribution to the construc-
tion of the current pass profile at any point p on the current pass. Consequently the
resulting effects on the dynamics must be accounted for in any ‘realistic’ mathematical
model.

The structure of (1) has no Roesser or Fornasini–Marchesini state-space model
interpretation and hence the theory of such systems cannot be applied here. To deal
with this case, we first derive new results for the previously considered discrete linear
repetitive process state-space model and then extend them to this new model. In this
previous model (Rogers, & Owens, 1992), it was assumed that the current pass and
state profile vector at any point was only directly influenced by the pass profile vector
at the same point on the previous pass. Hence this model makes no allowance for the
‘extra’ dynamics described in the previous paragraph and the model structure of (1)
is one possible means of including its effects.



252 Multidim Syst Sign Process (2007) 18:249–272

Suppose that for p = 0, 1, . . . , α − 1

Bj =
{

B0, j = p,
0, j �= p

(2)

and also

Dj =
{

D0, j = p,
0, j �= p.

(3)

Then in this case, the model of (1) reduces to that first introduced in Rogers, & Owens
(1992), i.e.

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p),

yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p). (4)

In this paper we will refer to this last model as a standard and the model of (1) as an
extended discrete linear repetitive process respectively.

Consider the following partial ordering of two tuple integers

(i, j) ≤ (k, p), if i ≤ k and j ≤ p,
(i, j) = (k, p), if i = k, j = p,
(i, j) < (k, p), if (i, j) ≤ (k, p) and (i, j) �= (k, p).

Then the dynamics of the discrete linear repetitive processes considered in this paper
can be visualized as evolving over the rectangle

De := {(k, p) : k ≥ 0, 0 ≤ p ≤ α − 1}.
Figure 1 shows the updating structure of the state and pass profile vectors in (1) (which
clearly includes that of (4) as a special case).

Suppose also that it is required to ensure stability for a given example. Then in
terms of control law actuation, information in the following sets has already been
generated at point p on pass k and hence available for use in a control law

Xnc ={xk(τ ) : p < τ ≤ α} ∪ {xk′(p) : 0 ≤ p ≤ α, k′ < k},
Unc ={uk(τ ) : p < τ ≤ α − 1} ∪ {uk′(p) : 0 ≤ p ≤ α − 1, k′ < k},
Ync ={yk(τ ) : p < τ ≤ α − 1} ∪ {yk′(p) : 0 ≤ p ≤ α − 1, k′ < k}.

(5)
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Fig. 1 Illustrating the state (left) and pass profile (right) vector updating structure in (1)
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For processes described by (4) it is (as noted previously in this paper) possible
to solve some control related problems by exploiting their inherent 2D linear sys-
tems structure and, in effect, adapt tools/results first developed for 2D linear systems
described by the extensively studied Roesser (1975) and Fornasini and Marchesini
(1978) state-space models. In cases where this approach is not applicable, such as
pass profile controllability (Galkowski, Rogers, & Owens, 1998) which has no Roes-
ser or Fornasini–Marchesini model equivalent, the 1D equivalent model (Galkowski,
Rogers, & Owens, 1998) has provided the analysis basis on which to characterize
this property in terms of matrix rank tests and easily implemented stability tests
respectively. Here we investigate the role of such an equivalent model for processes
described by (1), where its construction is a straightforward extension of that for
processes described by (4), and hence only the main steps are detailed here.

Set l = k + 1 and vl+1(p) = yl(p) in (1) and introduce the so-called global state,
input and pass profile vectors (termed super-vectors here) of dimensions nα×1, rα×1
and mα × 1, respectively, as

X(l) :=

⎡

⎢⎢⎢⎢⎢⎣

xl(1)

xl(2)

xl(3)
...

xl(α)

⎤

⎥⎥⎥⎥⎥⎦
, U(l) :=

⎡

⎢⎢⎢⎢⎢⎣

ul(0)

ul(1)

ul(2)
...

ul(α − 1)

⎤

⎥⎥⎥⎥⎥⎦
, V(l) :=

⎡

⎢⎢⎢⎢⎢⎣

vl(0)

vl(1)

vl(2)
...

vl(α − 1)

⎤

⎥⎥⎥⎥⎥⎦
.

Then the 1D equivalent model is

X(l) = �αV(l) + �αU(l) + �0α dl,

V(l + 1) = �αV(l) + �αU(l) + �0α dl, (6)

where

�0α :=

⎡

⎢⎢⎢⎢⎢⎣

A
A2

A3

...
Aα

⎤

⎥⎥⎥⎥⎥⎦
, �0α :=

⎡

⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAα−1

⎤

⎥⎥⎥⎥⎥⎦
,

�α :=

⎡

⎢⎢⎢⎢⎢⎣

B 0 0 . . . 0
AB B 0 . . . 0
A2B AB B . . . 0

...
...

...
. . .

...
Aα−1B Aα−2B Aα−3B . . . B

⎤

⎥⎥⎥⎥⎥⎦
,

�α :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 B1 B2 . . . Bα−1
B0 + AB0 B1 + AB1 B2 + AB2 . . . Bα−1 + ABα−1∑2

i=0 AiB0
∑2

i=0 AiB1
∑2

i=0 AiB2 . . .
∑2

i=0 AiBα−1∑3
i=0 AiB0

∑3
i=0 AiB1

∑3
i=0 AiB2 . . .

∑3
i=0 AiBα−1

...
...

...
. . .

...∑α−1
i=0 AiB0

∑α−1
i=0 AiB1

∑α−1
i=0 AiB2 . . .

∑α−1
i=0 AiBα−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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�α :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0 D1 D2 . . . Dα−1
CB0 + D0 CB1+D1 CB2 + D2 . . . CBα−1+Dα−1∑1

i=0 CAiB0+D0
∑1

i=0 CAiB1+D1
∑1

i=0 CAiB2+D2 . . .
∑1

i=0 CAiBα−1+Dα−1∑2
i=0 CAiB0+D0

∑2
i=0 CAiB1+D1

∑2
i=0 CAiB2+D2 . . .

∑2
i=0 CAiBα−1+Dα−1

...
...

...
. . .

...∑α−2
i=0 CAiB0+D0

∑α−2
i=0 CAiB1+D1

∑α−2
i=0 CAiB2+D2 . . .

∑α−2
i=0 CAiBα−1+Dα−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�α :=

⎡

⎢⎢⎢⎢⎢⎣

D 0 0 . . . 0
CB D 0 . . . 0

CAB CB D . . . 0
...

...
...

. . .
...

CAα−2B CAα−3B CAα−4B . . . D

⎤

⎥⎥⎥⎥⎥⎦
. (7)

Next, we introduce the required parts of the stability theory for constant pass length
linear repetitive processes and develop some new results on dynamic decoupling
(defined in context in the next section).

3 Stability and stabilization: the standard model case

The stability theory (Rogers, & Owens, 1992) for linear repetitive processes is based
on an abstract model of the process dynamics in a Banach space setting and consists of
two distinct concepts, termed asymptotic stability and stability along the pass, respec-
tively. Recalling the unique control problem for these processes, asymptotic stability
demands that bounded (defined in terms of the norm on the underlying signal space)
input sequences (formed from control inputs and disturbances which enter on the
current pass) produce bounded sequences of pass profiles over the, finite and fixed by
definition, pass length. Also if this property holds then the sequence of pass profiles
produced is guaranteed to converge in the pass-to-pass direction to a so-called steady
or limit profile which in the case of the processes considered here are described by a
1D discrete linear systems state-space model.

For the remainder of this section, we consider only processes described by (4) since
the extension to processes described by (1) is immediate (we will exploit dynamic
decoupling as defined below in the next section). First note that asymptotic stability
holds if, and only if, r(D0) < 1, where r(·) denotes the spectral radius of its argument.
Also, with D = 0 for simplicity, the 1D model describing the resulting limit profile
dynamics has state matrix AlP := A + B0(Im − D0)

−1C. Hence it is possible for a
process to be asymptotically stable yet the resulting limit profile is ‘unstable along
the pass’ in the 1D systems sense, i.e. r(AlP) ≥ 1. A simple example here is when
A = −0.5, B = 1, B0 = −0.5 + β, C = 1, D = D0 = 0, where the real scalar β is
chosen such that |β| ≥ 1.

This situation is due to the finite pass length (over which duration even an unstable
1D linear system can only produce a bounded output). Intuitively, therefore, it is to be
expected that a stability definition which prevents this undesirable behaviour, termed
stability along the pass, will place constraints on the matrix A and, in particular, the
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requirement that r(A) < 1, since this matrix describes the evolution of the dynamics
along a pass. This is indeed true but, as the above example demonstrates, it still does
not guarantee that unstable limit profile dynamics cannot occur. The extra condi-
tion required here is most appropriately expressed as the requirement that, assuming
{A, B0} is controllable and {C, A} observable, all eigenvalues of the transfer function
matrix

G0(z) := C(zIn − A)−1B0 + D0 (8)

have modulus strictly less than unity for all |z| = 1.
It is also possible to give a physically based interpretation of these properties and

the difference between them. Consider first asymptotic stability in the presence of no
control input terms. Then at p = 0 we have yk(0) = Dk

0y0(0), k ≥ 1. Hence asymptotic
stability can be interpreted as requiring that the sequence of pass initial profile vectors
must not become unbounded with k. For stability along the pass consider for simplic-
ity the single-input single-output case with zero state initial vector sequence and zero
control input. Then the process dynamics can be written as yk(z) = Gk

0 (z)y0(z) and
hence we see that this property requires that each frequency component of the initial
pass profile is attenuated from pass-to-pass at a geometric rate.

Suppose also that it is required to ensure stability for a given example. Then in
terms of control law actuation, all the information in the sets of (5) is available for
use. In implementation terms, however, there is clearly benefit to be achieved from
using a control law which requires the minimal amount of information from these
sets. Moreover, earlier work (Rogers, & Owens, 1992) has shown that, except in a few
very restrictive special cases, the control law used must be actuated by a combination
of current pass information and ‘feedforward’ information from the previous pass to
guarantee even stability along the pass with the control law applied. Note also here
that in the ILC application area the previous pass output vector (or a trial in ILC
terminology) is an obvious signal to use as feedforward action.

One control law with this structure is of the following form over 0 ≤ p ≤ α−1, k ≥ 0

uk+1(p) = Hxxk+1(p)+Hyyk(p) := H
[
xk+1(p)

yk(p)

]
, (9)

where Hx and Hy are appropriately dimensioned matrices to be designed. Note that
(9) can be partitioned into two following control laws (depending on which part of
model is to be influenced), i.e.

uk+1(p) = Hyyk(p) + ûk+1(p) (10)

or

uk+1(p) = Hxxk+1(p) + ûk+1(p), (11)

where now ûk+1(p) denotes an auxiliary control input which is available for the further
use (if required).

In effect, the control law (9) uses feedback of the current state vector (which is
assumed to be available for use) and ‘feedforward’ of the previous pass profile vector.
Note that in repetitive processes the term ‘feedforward’ is used to describe the case
where state or pass profile information from the previous pass (or passes) is used as
(part of) the input to a control law applied on the current pass, i.e. to information
which is propagated in the pass-to-pass (k) direction.
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The stability properties of processes described by (4) can be compactly summarized
in terms of the so-called augmented plant matrix

ϒ :=
[

A B0
C D0

]

and under the action of a control law of the form (10) this is mapped to

ϒc :=
[

A B0 + BHy
C D0 + DHy

]

and under (11) to

ϒc :=
[

A + BHx B0
C + DHx D0

]

(For the extended model (1) only the first of these mappings holds).
It now follows immediately that under the action of (10), the matrix D0 govern-

ing asymptotic stability is mapped to D0 + DHy and hence the controlled process
has this property if, and only if, the pair {D0, D} is controllable in normal 1D sense.
Similarly, using (11), the matrix A is mapped to A + BHx and it follows immediately
that this control law can achieve the necessary condition for stability along the pass
that r(A + BHx) < 1 if, and only if, the pair {A, B} is controllable in the normal 1D
sense. Note also that the application of (10) or (11) always maps the matrix B0 or C,
respectively, and hence the possibility of using it simplify the dynamics of the resulting
controlled process by decoupling the pass state and pass profile updating equations
in the manner detailed next.

Consider first (10) and suppose that it is possible to achieve

B̃0 := B0 + BHy = 0 (12)

by the suitable choice of Hy. Then the state dynamics on the current pass are com-
pletely decoupled from the previous pass profile and a simplified updating structure
holds. In particular, given the pass state initial vector sequence {dk}k≥1 and the control
input sequence to be applied, the state dynamics on each pass can be computed and
then the corresponding pass profile sequence, i.e. in Figure 1 simplified to this case
horizontal (state) and vertical (pass profile) updating become independent of each
other. Also asymptotic stability holds provided we can also choose Hy such that

r(D̃0) < 1, D̃0 := D0 + DHy. (13)

Suppose now that (11) is applied and it is also possible to achieve

C̃ := C + DHx = 0. (14)

Then the state dynamics on the current pass are completely decoupled from the pre-
vious pass profile and a simplified updating structure then holds. In particular given
the pass initial profile y0(p) and the control input sequence the pass profile sequence
can be computed directly (and then the pass state vector sequence if required). Also
it is possible that (11) can be designed such that

r(Ã) < 1, Ã := A + BHx. (15)

The following results now follow immediately from the above analysis and applica-
tion of a well known 1D discrete linear system LMI controller design condition (see
e.g. Galkowski et al., 2003).
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Theorem 1 Suppose that a control law of the form (11) is applied to a discrete linear
repetitive process described by (4). Then (14) and (15) simultaneously hold if, and only
if, there exist matrices Px > 0, Gx, and Nx such that the following LMI holds

[ −Px AGx + BNx

GT
x AT + NT

x BT Px − Gx − GT
x

]
< 0, (16)

CGx + DNx = 0. (17)

When this condition holds, Hx can be computed as

Hx = NxG−1
x .

Theorem 2 Suppose that a control law of the form (10) is applied to a discrete linear
repetitive process described by (4). Then (12) and (13) simultaneously hold if, and only
if, there exist matrices Py > 0, Gy and Ny such that the following LMI holds

[ −Py D0Gy + DNy

GT
y DT

0 + NT
y DT Py − Gy − GT

y

]
< 0, (18)

B0Gy + BNy = 0. (19)

When this condition holds, Hy can be computed as

Hy = NyG−1
y .

The following result concerning stability along the pass can also be stated.

Theorem 3 Suppose that a control law of the form (9) is applied to a discrete linear
repetitive process described by (4). Then the resulting controlled process is stable along
the pass if

(a) (16) holds,
(b) (18) holds,
(c) C̃ = 0 or B̃0 = 0.

Proof The inequalities (16) and (18) are equivalent to r(Ã) < 1 and r(D̃0) < 1, respec-
tively (Sulikowski, Galkowski, Rogers, & Owens, 2005). Now consider the controlled
process version of (8), i.e.

G̃0(z) := C̃(zIn − Ã)−1B̃0 + D̃0.

Then clearly C̃ = 0 or B̃0 = 0 guarantees

r(G̃0(z)) = r(D̃0) < 1.

The analysis above is, of course, subject to several strong limitations which may
hinder its applicability. First, the two matrix equations in this last result must be solved
and the existence of a solution requires that

rank(D) = rank([D, CGx])
and

rank(B) = rank([B, B0Gy]).
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The point here is that the decision matrices Gx and Gy in the LMIs are also the part of
the conditions for the existence of solutions which can cause problems. If no solutions
of (17) and (19) exist, then one possibility is to attempt approximate decoupling by
minimizing a norm applied to CGx + DNx and B0Gy + BNy.

This decoupling based approach can also be applied to the model of (1) but stability
along the pass is a much more involved question. Moreover, design for asymptotic
stability could include the need to work with (potentially) very large dimensioned
matrices. We show in the next section, however, that this problem can be avoided by
adopting a different design strategy. Finally, note that uncertainty in the model matri-
ces in the above design can also be treated using known techniques. In particular, if
there is uncertainty in C and D for the first case and B0 and B for the second then
analysis based on uncertainty models with a known norm bounded structure (see, for
example, Galkowski et al., 2003) or polytopic form (Cichy, Galkowski, Kummert, &
Rogers, 2005) extends directly—the equality constraints (17) and (19), respectively,
do not change their forms and (16) and (18) respectively need only be rewritten in
the form of the considered uncertainty structure.

4 Stability and stabilization analysis: the extended model case

Consider first asymptotic stability of the extended model where the situation is clearly
much more complicated than for the standard model. There is, however, a route for-
ward based on the fact that asymptotic stability in this case is equivalent to requiring
r(�α) < 1 in the 1D equivalent model (which can be proved as in Rogers, Galkowski,
Gramacki, Gramacki, & Owens, 2002 for the case of dynamic boundary conditions.)

This is a very powerful result and the only real difficulty with it is the (potentially)
very large dimensions of the matrix involved. Note also that major numerical errors
can occur during the construction of the 1D equivalent model due to the need to form
powers of the matrix A, especially when r(A) > 1.

Numerical difficulties could also arise in terms of control law design to ensure
asymptotic stability. To explain this point, note that for processes described by (4),
asymptotic stability can be achieved (here we assume that this is possible) under a
control law of the form (9) (with Hx = 0 for simplicity) by choosing the matrix Hy
such that r(D0 + DHy) < 1. In the case of processes described by (1), however, this
is not possible and here we show that an alternative is to employ the 1D equivalent
model and seek to design a control law of the form

U(l) = KV(l) (20)

such that r(�α + �αK) < 1. This control law is actuated by all points along the previ-
ous pass where as (9) is only single point actuated. Given that in the model of (1) it is
all points along the previous pass which contribute to the dynamics at a single point
on the current pass (plus the fact that asymptotic stability deals with information in
the pass-to-pass (k) direction) it is to be expected that a control law with single point
actuation will be relatively weak in this case.

As the first step in developing an efficient design algorithm for (20) to ensure
asymptotic stability, we proceed via an LMI interpretation arising from the fact that
r(�α) < 1 is equivalent to the requirement that ∃P > 0 such that
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[ −P �T
α P

P�α −P

]
< 0. (21)

Hence we have the following necessary and sufficient condition for asymptotic stabil-
ity under the action of the control law (20).

Theorem 4 Suppose that the 1D equivalent model (6) is used to design a control law
of the form (20) for a discrete linear repetitive process described by (1). The controlled
process is asymptotically stable if, and only if, ∃ matrices Q > 0 and L such that the
following LMI holds

[ −Q Q�T
α + LT�T

α

�αQ + �αL −Q

]
< 0. (22)

Also if this condition holds then K in (20) can be computed as

K = LQ−1. (23)

Proof The controlled process is asymptotically stable (using the Lyapunov stability
inequality for 1D discrete linear systems with state matrix �α , input matrix �α and
state feedback matrix K) if, and only if,

(�α + �αK)TP(�α + �αK) − P < 0, (24)

where P > 0. Applying the Schur’s complement formula for matrices and pre- and
post-multiplying the result as detailed next

[
I 0
0 P

] [ −P (�α + �αK)T

�α + �αK −P−1

] [
I 0
0 P

]
< 0 (25)

yields
[ −P (�α + �αK)TP

P(�α + �αK) −P

]
< 0. (26)

Next, set Q = P−1 and pre- and post-multiply (26) by the diagonal matrix diag{Q, Q}
to obtain

[ −Q Q(�α + �αK)T

(�α + �αK)Q −Q

]
< 0. (27)

Use of (23) now yields the LMI of (22) and the proof is complete.

A difficulty in applying this result may arise since Q is a LMI decision matrix and
simultaneously is used to compute the control law matrix K. The next result is better
in this respect and is based on the 1D case as in Peaucelle, Arzelier, Bachelier, &
Bernussou (2000).

Theorem 5 Suppose that the 1D equivalent model (6) is used to design a control law
of the form (20) for a discrete linear repetitive process described by (1). Then the con-
trolled process is asymptotically stable if, and only if, ∃ matrices P > 0 and G, L such
that the following LMI holds

[ −P �αG + �αL
GT�T

α + LT�T
α P − G − GT

]
< 0. (28)
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Also if this condition holds, a stabilizing K is given by

K = LG−1. (29)

Proof For necessity assume that G = Q and then (28) reduces to (22). For sufficiency,
left multiply (28) by [ I |�α + �αLG−1 ] (note that G is invertible since G + GT > 0)
and right multiply the result by the transpose of this matrix to obtain (24).

Both of the design methods given above require the solution of possibly very large
dimensioned LMIs which is well known to be difficult to do using modern solvers.
Next, we show that this problem can be overcome in some cases of direct interest here
by exploiting the decoupling results of the previous section. In particular, suppose
that the current pass state vector is decoupled from the pass profile updating equation
in (1) using the control law uk+1(p) = Hxxk+1(p) + ûk+1(p), such that C + DHx = 0
(where ûk+1(p) is an auxiliary current pass control input vector). (Note that in the
design algorithm which follows C and D must be exactly known and the extension to
robustness analysis as discussed at the end of the previous section can only be applied
here when the uncertainty is not present in these matrices.)

The resulting controlled process state-space model after the control law has been
designed is

xk+1(p + 1) = (A + BHx)xk+1(p) + Bûk+1(p) +
α−1∑

j=0

Bjyk(j),

yk+1(p) = Dûk+1(p) +
α−1∑

j=0

Djyk(j) (30)

and in the 1D equivalent model we have that

�α =

⎡

⎢⎢⎢⎣

D0 D1 D2 . . . Dα−1
D0 D1 D2 . . . Dα−1

...
...

...
. . .

...
D0 D1 D2 . . . Dα−1

⎤

⎥⎥⎥⎦ , �α =

⎡

⎢⎢⎢⎣

D 0 0 . . . 0
0 D 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . D

⎤

⎥⎥⎥⎦ . (31)

Now we have the following easily proved result which, in effect, is a computationally
more efficient test for asymptotic stability.

Lemma 1 The matrix �α of (31) has (α − 1)m zero eigenvalues and the remaining m
are those of the matrix

∑α−1
j=0 Dj.

The form of �α here can also be exploited in the design of a control law of the form

Û(l) = KV(l), (32)

where Û(l) is the 1D equivalent model super-vector corresponding to ûk+1(p), to
ensure asymptotic stability of the original process. In particular, suppose that the
structure of the control law matrix is taken to be
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K =

⎡

⎢⎢⎢⎣

K0 K1 K2 . . . Kα−1
K0 K1 K2 . . . Kα−1
...

...
...

...
...

K0 K1 K2 . . . Kα−1

⎤

⎥⎥⎥⎦ , (33)

which yields a 1D equivalent model with state matrix

�̃α = �α + �αK. (34)

Then we have the following result.

Theorem 6 Suppose that a control law of the form uk+1(p) = Hxxk+1(p) + ûk+1(p) is
applied to a discrete linear repetitive process described by (1) and has been designed
such that (30) holds. Suppose also that (30) is replaced by its 1D equivalent model (6)
which is then used to design a control law of the form (32) (i.e. Û(l) = KV(l)) applied
with a K of the form (33). Then the resulting controlled process is asymptotically stable
if, and only if, ∃ matrices P > 0, G, Lj, j = 0, 1, . . . , α − 1 such that the following LMI
holds

⎡

⎢⎢⎢⎢⎢⎣

−P
α−1∑

j=0

(
DjG + DLj

)

α−1∑

j=0

(
GTDT

j + LT
j DT

)
P − G − GT

⎤

⎥⎥⎥⎥⎥⎦
< 0. (35)

Also if this condition holds, block entry Kj in the control law matrix K of (33) is given
by

Kj = LjG−1, ∀j = 0, 1, . . . , α − 1. (36)

Proof First, set D = ∑α−1
j=0 Dj, K = ∑α−1

j=0 Kj and L = ∑α−1
j=0 Lj. Then the resulting

controlled process is asymptotically stable if, and only if,

(D + DK)TW(D + DK) − W < 0, (37)

where W > 0. Next make an obvious application of the Schur’s complement formula

and pre- and post-multiply the result by
[

I 0
0 W

]
to obtain

[ −W (D + DK)TW
W(D + DK) −W

]
< 0. (38)

Now set P = W−1 and pre- and post-multiply (38) by the diagonal matrix diag{P, P}
to obtain

[ −P P(D + DK)T

(D + DK)P −P

]
< 0 (39)

or, with K = LP−1,
[ −P PDT + LTDT

DP + DL −P

]
< 0. (40)
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Now we have to establish that (40) is equivalent to (35), where this last condition
can be replaced by

[ −P DG + DL
GTDT + LTDT P − G − GT

]
< 0. (41)

To show necessity, assume G = P and note that (41) becomes (40) since the LMI
is symmetric. For sufficiency, left multiply (41) by [ I |D + DLG−1 ] (note that G is
invertible since G + GT > 0) and right multiply the result by its transpose to obtain
(37). Next note that

K = LG−1 =
⎛

⎝
α−1∑

j=0

Lj

⎞

⎠ G−1 =
α−1∑

j=0

(LjG−1) =
α−1∑

j=0

Kj (42)

and (35) ensures that the control law matrix K is such that

r

⎛

⎝

⎛

⎝
α−1∑

j=1

Dj

⎞

⎠ + DK
⎞

⎠ < 1, (43)

which, on applying the result of Lemma 1, is equivalent to r(�̃α) < 1. This completes
the proof.

Remark 1 Note here that the LMI to be solved in this last result is, in general, of
much less dimension than that of Theorem 5. In particular, we have to compute an
mα ×mα decision matrix in the LMI of Theorem 5 and in that of Theorem 6 an m×m
matrix, where most often α (the pass length) is much greater than m (the number of
entries in the pass profile vector).

A simplified form of the above result arises when it is assumed that

Kij = K̂, i, j = 0, 1, . . . , α − 1. (44)

Also if this condition holds then it is easy to conclude that K = αK̂, and from (42) L
of (35) satisfies L = αL̂. Hence we can then use

K =

⎡

⎢⎢⎢⎢⎣

K̂ K̂ K̂ . . . K̂
K̂ K̂ K̂ . . . K̂
...

...
...

...
...

K̂ K̂ K̂ . . . K̂

⎤

⎥⎥⎥⎥⎦
. (45)

In summary, therefore, we have developed a procedure for control law design to
achieve asymptotic stability of processes described by (1). The first step is to use
preliminary control action to decouple the current pass state vector from the pass
profile updating equation (which, however, is not always possible). This step does not
reduce the dimension of, in particular, the matrix �α but crucially greatly simplifies
its spectrum. It is this fact which simplifies the final control law design.

Consider now stability along the pass. Then here we need to consider the case
when α → ∞ and it is clear that the stability along the pass analysis of the previ-
ous section is not applicable here. Suppose, however, that preliminary control action
has been applied to convert the process dynamics to the form (30). Also introduce
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�∞ := limα→∞ �α . Then it can be argued directly from the abstract model based
theory that stability along the pass holds if, and only if, r(�∞) < 1. This in turn, is
equivalent to r(

∑∞
j=0 Dj) < 1 which is more convenient for numerical evaluation.

5 Successive stabilization

The analysis of the previous section has produced a systematic method of ensuring
asymptotic stability using the 1D equivalent model. A consequence of this, however,
is that the inherent 2D linear systems structure of these processes has been subsumed
into the 1D model and in some cases of interest it will be beneficial to retain this
structure. Also to meet the decoupling specifications of the previous analysis, extra
conditions are necessary which will not always hold. Conversely, direct use of Theo-
rem 4 or 5 could lead in some cases to computations involving matrices of extremely
high dimensions and hence the strong possibility of overflow and underflow errors
in intermediate steps which can completely destroy the numerical reliability of the
calculation process. (The problem here arises from the multiplication of the input,
pass profile and state vector dimensions by the value of the pass length during the
construction of the 1D equivalent model.)

As an alternative, we now develop the so-called successive stabilization approach.
In effect, this first replaces the potentially huge dimensioned problem with one of
less dimensions and then iteratively improves it to the full pass length subject to the
requirement that the outcome of each stage must result in a state-space model which
has the structure of a discrete linear repetitive process (this is not guaranteed in the
cases where Theorem 4 or 5 can be applied).

To improve the iterative solution algorithm, the preliminary step of stabilizing the
matrix A in the 1D discrete linear systems sense when r(A) ≥ 1 can lead to a reduction
in the number of iterations needed to obtain the required result. Note also that suc-
cessive stabilization is not an alternative solution in cases when Theorem 4 or 5 does
not hold. Rather the aim is to obtain an efficient and numerically reliable solution in
the case when at least one of these results holds but is not computationally feasible
with a high degree of accuracy.

To proceed, suppose that the control law matrix K applicable in (20) is assumed to
be of the form (33), where this ensures that the controlled process retains the structure
of (1). Hence K can be treated as a set of 2D controllers Ki, i = 0, . . . , α − 1, which
influence the dynamics from pass-to-pass.

The structure of (33) for K can be achieved by setting

G =

⎡

⎢⎢⎢⎣

G0 0 . . . 0
0 G1 . . . 0
...

...
...

...
0 0 . . . Gα−1

⎤

⎥⎥⎥⎦ (46)

and

L =

⎡

⎢⎢⎢⎣

L0 L1 L2 . . . Lα−1
L0 L1 L2 . . . Lα−1
...

...
...

...
...

L0 L1 L2 . . . Lα−1

⎤

⎥⎥⎥⎦ (47)
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in the condition of Theorem 5. Then K0 = L0G−1
0 , K1 = L1G−1

1 , . . . , Kα−1 =
Lα−1G−1

α−1, and also �̃α can be written in the form �̃α = [�̃ij], where

�̃ij =

⎧
⎪⎨

⎪⎩

Dj + DKj, i = 1, j = 0, 1, . . . , α − 1,

Dj + DKj +
i−1∑

t=0

(CAtBj + CAtBKj), i = 2, 3, . . . , α, j = 0, 1, . . . , α − 1

=

⎧
⎪⎪⎨

⎪⎪⎩

D̂j, i = 1,

D̂j +
i−1∑

t=0

(CAtB̂j), i = 2, 3, . . . , α − 1.
(48)

Hence, it follows immediately that the controlled process with the matrix K given by
(33) has a state-space model of the form (1) with Â = A, B̂ = B, Ĉ = C, D̂ = D
and

B̂i = Bi + BKi, D̂i = Di + DKi, i = 0, 1, . . . , α − 1. (49)

The basic idea of so-called successive stabilization is that we first make the process
asymptotically stable over a short pass length and then subsequently augment this
design by increasing the pass length by using only control action which preserves the
original repetitive process state-space model structure. This approach to design also
avoids the need to work with matrices with very large dimensions.

The design procedure is as follows.

Step 1 Choose an initial pass length α1 < α, and h the number of points added in
each iteration such that there exists a natural number q satisfying α−α1 = qh.
Set an iteration counter v = 1.

Step 2 Construct �α1 using (7) with α = α1 and check if r(�α1) < 1. If yes, go to
Step 5.

Step 3 Use (28) and (29) to compute the appropriate control law matrices K0, K1, . . . ,
Kα1−1 for the partial pass of the length α1. Set Kα1 , Kα1+1, . . . , Kα−1 = 0 and
calculate the full modified system matrix �̃α of (34).

Step 4 Check if r(�̃α) < 1, and if this is true terminate the procedure. If not, go to
the next step.

Step 5 Check if α1 + h > α holds. If yes, terminate the procedure since asymptotic
stability for the controlled process cannot be achieved by this method. If no,
increase v by 1, set α1 := α1 + h and return to Step 2.

Remark 2 Note that above algorithm is always at least as effective as stabilization
based on direct use of the matrix �α . To see this, set α1 = α in the first step. Also if the
initial stabilization problem size is α1 < α, and it is impossible to achieve stabilization
for such a chosen pass length, then executing Step 5 finally gives stabilization based
on �α .

Remark 3 For sufficiently large α and small α1 and h the evaluation of the above
algorithm can take a very long time but overall we have found that it compares very
favourably with solving the stabilization problem with the full �α .

Next, we give numerical examples to illustrate the results in this paper, the first for
decoupling and the second successive stabilization.
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6 Examples

Example 1 Consider the particular case of (1) when α = 20 and

A =
⎡

⎣
1.99 −0.96 0.0
0.0 0.0 −1.87

−2.36 −2.82 −0.32

⎤

⎦ ,

B =
⎡

⎣
0.0 1.54 2.13
2.24 0.0 −1.43
0.92 −2.03 1.18

⎤

⎦ ,

B := [
B0 B1 . . . B19

]

=
⎡

⎣
−1.44 −0.96 −2.85 0.0 0.0 1.33 1.47 0.0 0.88 −0.87

0.0 −2.54 0.0 −0.71 1.86 −1.87 0.0 0.0 2.81 2.20
0.0 2.07 0.0 0.10 2.62 0.0 2.40 3.0 0.53 −0.29

0.56 −0.09 −2.36 −2.63 0.0 −2.80 0.74 2.21 0.0 0.03
−1.88 −0.33 0.0 0.0 0.0 1.92 1.77 0.0 2.58 0.14
1.33 0.0 1.0 0.0 0.0 −1.27 2.83 0.67 1.04 0.51

0.03 0.0 0.0 1.03 −0.37 −2.15 0.82 2.95 −1.59 −0.96
0.0 0.50 0.0 0.0 1.24 0.56 0.0 0.0 2.02 −2.84
0.0 −2.96 0.0 −2.22 0.0 0.0 0.0 1.08 −0.84 −0.32

−2.02 −0.47 −1.45 2.09 0.0 0.68 0.25 0.07 2.60 0.0
1.94 0.76 0.60 0.0 −0.81 0.0 2.87 −1.85 −0.15 −0.13

−2.19 0.0 −1.18 −1.67 −0.98 −2.63 0.0 0.0 0.99 0.0

⎤

⎦ ,

C =
[

1.38 1.69 −2.21
0.0 0.0 1.62

]
,

D =
[−0.46 −2.89 2.34

0.0 −0.18 −2.12

]
,

D := [
D0 D1 . . . D19

]

=
[

0.24 0.0 0.0 −1.67 0.0 0.49 0.0 −0.90 −1.46 1.68
0.94 1.17 −1.54 1.91 0.0 −1.74 −0.77 −0.78 0.0 −1.66

−1.92 0.05 −0.6 0.0 0.0 1.49 −0.16 0.72 0.0 1.13
0.95 0.34 0.0 −1.79 0.0 0.0 −0.68 −1.43 −1.25 1.87

0.0 0.0 1.13 −1.43 0.0 0.0 0.0 −0.91 0.06 0.17
−0.44 0.0 0.0 0.0 1.03 0.0 −0.76 1.47 −0.48 1.79
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0.0 −1.15 0.0 0.62 −0.04 0.20 0.0 1.45 0.72 1.49
−0.83 −1.73 −0.77 0.0 −0.92 −1.75 −1.06 0.0 0.0 0.0

]
.

This example is asymptotically unstable since r(�α) = 6.9248 × 107. Applying
Theorem 1 in this case yields the following matrices

Px =
⎡

⎣
1609.2545 −3472.7949 −3717.4772

−3472.7949 8289.9193 8846.9029
−3717.4772 8846.9029 9450.1232

⎤

⎦ ,

Gx =
⎡

⎣
970.4892 −1856.2049 −1998.9717

−2065.2941 4755.6368 5082.2434
−2206.7096 5048.4788 5413.2067

⎤

⎦ ,

Nx =
⎡

⎣
−3378.4267 6543.5446 7105.4660

108.1323 108.6375 90.05
−1695.4403 3848.5759 4128.8612

⎤

⎦

and the decoupling control law matrix Hx is given by

Hx =
⎡

⎣
−2.9399 −3.7553 3.7526
0.8846 1.1064 −0.6955

−0.0751 −0.0939 0.8232

⎤

⎦

Application of Theorem 6 now yields

P =
[

407022367.2187 0.0
0.0 407022367.2187

]

G =
[

407022367.2187 0.0
0.0 407022367.2187

]

and if (38) and (39) are employed then

L̂ =
⎡

⎣
−8203055.3853 1106302.6858
−60008273.8591 5489886.5988
−58070224.4638 −22833155.3180

⎤

⎦

and

K̂ =
⎡

⎣
−0.0202 0.0027
−0.1474 0.0135
−0.1427 −0.0561

⎤

⎦

Finally, it is easy to see that the resulting controlled process is asymptotically stable
as required.

The following example illustrates the successive stabilization method in the case
when it is required to compute with much larger matrices (due to the value of the pass
length).
Example 2 Consider the particular case of (1) when α = 100 and

A =
[

0.47 0.66
0.66 −0.11

]
, B =

[
0.58
0.68

]
, C = [

0.16 0
]

, D = [
0.14

]
,
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B := [
B0 B1 . . . B99

]

=

−0.81 −0.12 −0.2 0.41 0.03 0.07 −0.2 0.06 −0.14 −0.07
0.05 0.04 0.22 0.4 0.4 −0.35 −0.02 −0.2 0.24 −0.03 . . .

−0.14 −0.15 −0.14 −0.15 −0.03 −0.06 −0.01 −0.01 −0.07 0.02
0.02 −0.02 0.02 0.05 −0.05 0 0.08 0 0.02 0.03 . . .

0.02 −0.07 0.09 −0.07 −0.06 0.04 −0.05 −0.02 −0.07 −0.05
0.06 0.07 0.03 0.02 0.08 0.06 0 −0.03 −0.02 −0.05 . . .

−0.02 0.04 −0.04 0.06 0.05 −0.01 0.06 −0.02 −0.02 −0.05
0.02 −0.01 −0.02 −0.01 −0.04 0.05 0 −0.03 0.04 −0.03 . . .

−0.05 −0.04 −0.04 −0.03 0.01 0.04 0.04 0.02 0.01 0.03
0.05 0.04 −0.03 0.03 0.02 0.01 −0.02 −0.03 0.01 −0.02 . . .

−0.01 0.04 0.02 0.02 −0.04 0.01 −0.03 0.03 0.01 0.03 . . .

−0.02 0.02 −0.03 −0.03 0 −0.02 −0.02 0.03 0.03 0.03 . . .

0.03 0.02 −0.01 −0.02 0 −0.02 0 0.02 0.01 −0.03
0 −0.02 0.01 −0.02 −0.03 0 −0.01 −0.02 0.03 0.02 . . .

0 0.01 0.03 −0.03 0.01 0.01 0.01 0 0.02 −0.02
0 0.01 0.03 −0.01 −0.03 0 −0.02 −0.01 −0.01 0.02 . . .

0 0.01 −0.02 −0.01 0.01 0 0.01 −0.01 −0.02 0.01
−0.01 0.01 −0.02 0 0.02 −0.03 −0.01 0.02 −0.01 −0.02 . . .

−0.01 0.01 −0.01 −0.01 0.01 −0.02 −0.01 −0.02 0 −0.01
0.02 −0.02 −0.02 0.01 0 0.02 0 0.01 0.01 0.02

,

D := [
D0 D1 . . . D99

]

=

−0.41 −0.27 −0.6 0.53 0.37 −0.03 0.04 0 0.24 −0.21 . . .

−0.1 −0.06 −0.13 0.08 0.04 −0.08 −0.01 −0.06 −0.11 −0.08 . . .

0.01 0.08 0.08 0.04 −0.05 0 0.05 0.03 −0.08 −0.03 . . .

−0.05 −0.04 −0.05 −0.06 −0.01 −0.03 −0.05 −0.01 −0.02 0.04 . . .

−0.05 0.05 0.05 0.05 0.03 −0.04 −0.02 0.02 −0.04 0.04 . . .

0 0.04 −0.01 0.03 −0.04 0.01 −0.01 0.01 −0.02 0.02 . . .

−0.03 −0.02 0 0.03 −0.03 0 −0.02 0.02 0 0.02 . . .

−0.02 0.02 −0.03 0.01 0.03 −0.01 −0.01 0 0.01 −0.01 . . .

0.02 0.02 0 0 −0.02 0 −0.02 0 −0.01 0.01 . . .

0.02 −0.01 −0.01 0 −0.01 0.02 −0.01 0 −0.01 0

.

Here r(�α) = 1.4876 and this process is asymptotically unstable. Moreover, attempts
to design a control law for asymptotic stability by the direct route failed because the
required LMI cannot be solved due to its large dimension.

To commence the successive stabilization algorithm, set α1 = 10 and h = 10. Then
Step 1 does not provide the required stabilizing control law but Step 2 is successful
and yields the stabilizing control law matrices as

K2 = [
K2

1 K2
2

]
,

K2
1 = [ −0.1569 −0.1211 −0.2795 0.2016 0.1442 0.0037 0.0277 0.0091 0.1013 −0.0912

]
,

K2
2 = [

0.2275 0.2096 0.2622 0.0135 0.0045 0.1447 −0.0190 0.0781 0.1782 0.0604
]

,
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where the superscript here denotes the iteration number. To apply the above control
law for the whole �α extend it by 01×80 (i.e. K = [

K2 0
]
) and hence �̃α = �α + �K.

The spectral radius of subsequent matrices �̃α (the matrix to which �α is mapped to
under the control action) during these iterations are given in the following table

Iteration number r(�̃α)

0 1.4876
1 1.6738
2 0.8379

Here asymptotic stability for the controlled process is achieved after two iterations.
Note also that when the direct route was attempted, the LMI involved was found to
be unsolvable numerically.

Figures 2 and 3 below show the free evolution (i.e. U(l) = 0, l = 0, 1, . . .) with-
out and with the control law applied respectively and boundary conditions xk(0) =[

1.8
−1.08

]
, k = 1, 2, . . . and y0(p) = 0.1, 0 ≤ p ≤ 99.

7 Conclusions

Control law design for discrete linear repetitive processes can involve the need to
compute with extremely large dimensioned matrices and one of the major contri-
butions of this paper is on the development of methods to avoid this problem. The
first set of results relate to the use of preliminary control law action to completely
decouple the effects of the current pas state and/or the previous pass profile vectors
from the onward evolution of the process dynamics, with consequent simplifications
in terms of control law design.

Fig. 2 The uncontrolled pass profile sequence
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Fig. 3 The controlled process pass profile sequence

The second set of results relate to the control of a new model for discrete linear
repetitive processes to include a term missing from the currently used model but which
could arise in applications, i.e. it is needed to capture the essential dynamics to be con-
trolled. As a result, control law design algorithms based on, e.g., LMI methods may
well encounter serious numerical difficulties and, moreover, the decoupling results
developed in the first part of this paper only work in very restrictive special cases.
To overcome these difficulties, a new stabilization procedure has been developed
where the control law is designed by an iterative procedure and as the examples (and,
in particular, Example 2) given, illustrate it can be applied to cases where very large
dimensioned matrices arise. Further development, e.g. by using parallel/array process-
ing, should allow for even larger examples well outside the range of most examples
encountered and hence give a general and reliable design methodology. Finally, note
that some of the LMI based results here are sufficient but not necessary and hence
there is a degree of conservativeness associated with them. However, they are design
algorithms which can be computed (as the examples here demonstrate) and, given
the absence/computational intractability of necessary and sufficient conditions based
on 2D polynomials, provide an applications oriented route forward.
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