Skip to main content
Log in

Computationally efficient underwater acoustic 2-D source localization with arbitrarily spaced vector hydrophones at unknown locations using the propagator method

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a propagator-based algorithm for underwater acoustic 2-D direction-of-arrival (DOA) estimation with arbitrarily spaced vector hydrophones at unknown locations. The proposed algorithm requires only linear operations but no eigen-decomposition or singular value decomposition into the signal and noise subspaces. Comparing with its ESPRIT counterpart (Wong and Zoltowski, IEEE J Oceanic Eng 22:566–575, 1997a), the proposed propagator algorithm has its computational complexity reduced by this ratio: the number of sources to quadruple the number of vector hydrophones. Simulation results show that at high and medium signal-to-noise ratio, the proposed propagator algorithm’s estimation accuracy is similar to its ESPRIT counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berliner M.J., Lindberg J.F. (1996) Acoustic Particle Velocity Sensors: Design, Performance and Applications. AIP, Woodbury, NY

    Google Scholar 

  • Champagne B. (1994) Adaptive eigendecomposition of data covariance matrices based on first-order perturbations. IEEE Transactions on Signal Processing 42: 2758–2770

    Article  Google Scholar 

  • D’Spain G.L., Hodgkiss W.S., Edmonds G.L. (1991) The simultaneous measurement of infrasonic acoustic particle velocity and acoustic pressure in the ocean by freely drifting swallow floats. IEEE Journal of Oceanic Engineering 16: 195–207

    Article  Google Scholar 

  • D’Spain, G. L., Hodgkiss, W. S., Edmonds, G. L., Nickles, J. C., Fisher, F. H., & Harriss, R. A. (1992). Initial analysis of the data from the vertical difar array. In IEEE Oceans 92 (pp. 346–351).

  • Hawkes M., Nehorai A. (1998) Acoustic vector sensor beamforming and Capon direction estimation. IEEE Transactions on Signal Processing 46: 2291–2304

    Article  Google Scholar 

  • Hawkes M., Nehorai A. (1999) Effects of sensor placement on acoustic vector sensor array performance. IEEE Journal of Oceanic Engineering 24: 33–40

    Article  Google Scholar 

  • Hawkes M., Nehorai A. (2000) Performance measures for estimating vector systems. IEEE Transactions on Signal Processing 48: 1737–1749

    Article  Google Scholar 

  • Hawkes M., Nehorai A. (2000) Acoustic vector sensor processing in the presence of a reflecting boundary. IEEE Transactions on Signal Processing 48: 2981–2993

    Article  Google Scholar 

  • Hawkes M., Nehorai A. (2001) Acoustic vector-sensor correlations in ambient noise. IEEE Journal of Oceanic Engineering 26: 337–347

    Article  Google Scholar 

  • He, J., & Liu, Z. (2007). Underwater acoustic azimuth and elevation angle estimation using spatial invariance of two identically oriented vector hydrophones at unknown locations in impulsive noise. Digital Signal Processing. doi:10.1016/j.dsp.2007.10.012.

  • Hochwald B., Nehorai A. (1996) Identifiability in array processing models with vector-sensor applications. IEEE Transactions on Signal Processing 44: 83–95

    Article  Google Scholar 

  • Lesie C.B., Kendall J.M., Jones J.L. (1956) Hydrophone for measuring particle velocity. Journal of the Acoustical Soceity of America 28(4): 711–715

    Article  Google Scholar 

  • Li P., Sun J., Yu B. (1996) Two-dimensional spatial spectrum estimation of coherent signals without spatial smoothing and eigendecomposition. IEE Proceedings-Radar, Sonar Navix. 143(5): 295–299

    Article  Google Scholar 

  • Marcos S., Marsal A., Benidir M. (1995) The propagator method for source bearing estimation. Signal Processing 42: 121–138

    Article  Google Scholar 

  • Munier J., Delisle G.Y. (1991) Spatial analysis using new properties of the cross-spectral matrix. IEEE Transactions on Signal Processing 39(3): 746–749

    Article  Google Scholar 

  • Nehorai A., Paldi E. (1994) Acoustic vector sensor array processing. IEEE Transactions on Signal Processing 42: 2481–2491

    Article  Google Scholar 

  • Nickles, J. C., Edmonds, G., Harriss, R., Fisher, F., Hodgkiss, W. S., Giles, J., & D’Spain, G. L. (1992). A vertical array of directional acoustic sensors. In IEEE Oceans 92 (pp. 340–345).

  • Roy R., Kailath T. (1989) Esprit-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing 37: 984–995

    Article  Google Scholar 

  • Schmidt R.O. (1986) Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 34: 276–280

    Article  Google Scholar 

  • Shchurov, V. A., Ilyichev, V. I., & Kuleshov, V. P. (1994). Ambient noise energy motion in the near-surface layer in ocean wave-guide. Journal of Physics, 4(5, part 2), 1273–1276.

    Google Scholar 

  • Tayem N., Kwon H.M. (2005) L-shape two-dimensional arrival angle estimation with propagator method. IEEE Transactions on Antennas and Propagations 53(5): 1622–1630

    Article  Google Scholar 

  • Tichavsky P., Wong K.T., Zoltowski M.D. (2001) Near-field/far-field azimuth and elevation angle estimation using a single vector hydrophone. IEEE Transactions on Signal Processing 49: 2498–2510

    Article  Google Scholar 

  • Wong K.T., Zoltowski M.D. (1997) Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at unknown locations. IEEE Journal of Oceanic Engineering 22: 566–575

    Article  Google Scholar 

  • Wong K.T., Zoltowski M.D. (1997) Extended-aperture underwater acoustic multi-source azimuth/ elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE Journal of Oceanic Engineering 22: 659–672

    Article  Google Scholar 

  • Wong K.T., Zoltowski M.D. (1999) Root-music-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEE Transactions on Signal Processing 47: 3250–3260

    Article  Google Scholar 

  • Wong K.T., Zoltowski M.D. (2000) Self-initiating velocity-field beamspace music for underwater acoustic direction-finding with irregularly spaced vector hydrophones. IEEE Journal of Oceanic Engineering 25: 262–273

    Article  Google Scholar 

  • Wong K.T., Chi H. (2002) Beam patterns of an underwater acoustic vector hydrophone located away from any reflecting boundary. IEEE Journal of Oceanic Engineering 27: 628–637

    Article  Google Scholar 

  • Wu Y., Liao G., So H.C. (2003) A fast algorithm for 2D direction-ofarrival estimation. Signal Processing 83: 1827–1831

    Article  MATH  Google Scholar 

  • Zha D.F., Qiu T.S. (2006) Underwater sources location in non-gaussian impulsive noise environments. Digtal Signal Processing 16: 149–163

    Article  Google Scholar 

  • Zoltowski M.D., Wong K.T. (2000) Closed-form eigenstructure- based direction finding using arbitrary but identical subarrays on a sparse uniform rectangular array grid. IEEE Transactions on Signal Processing 48(8): 2205–2210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Liu, Z. Computationally efficient underwater acoustic 2-D source localization with arbitrarily spaced vector hydrophones at unknown locations using the propagator method. Multidim Syst Sign Process 20, 285–296 (2009). https://doi.org/10.1007/s11045-008-0069-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-008-0069-9

Keywords

Navigation