Abstract
Two interpolation algorithms are presented for the computation of the inverse of a two variable polynomial matrix. The first interpolation algorithm, is based on the Lagrange interpolation method that matches pre-assigned data of the determinant and the adjoint of a two-variable polynomial matrix, on a set of points on several circles centered at the origin. The second interpolation algorithm is using discrete fourier transforms (DFT) techniques or better fast fourier transforms which are very efficient algorithms available both in software and hardware and that they are greatly benefitted by the existence of a parallel environment (through symmetric multiprocessing or other techniques). The complexity of both algorithms is discussed and illustrated examples are given. The DFT-algorithm is implemented in the Mathematica programming language and tested in comparison to the respective built-in function of Mathematica.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Antoniou G. E., Glentis G. O. A., Varoufakis S. J., Karras D. A. (1989) Transfer function determination of singular systems using the DFT. IEEE Transaction on Circuits and Systems 36(8): 1140–1142
Antoniou E. G. (2001) Transfer function computation for generalized N-dimensional systems. Journal of the Franklin Institute 338: 83–90
Basilio J. C. (2002) Inversion of polynomial matrices via state-space. Linear Algebra and its Applications 357: 259–271
Borchardt, W. (1860). Über eine Interpolationsformel f ür eine Art symmetrischer Funktionen und deren Anwendung (pp. 1–20), Abh. d. Preu β. Akad. d. Wiss..
Borgmann M., & Bolcskei H. (2004) Interpolation-based efficient matrix inversion for MIMO-OFDM receivers, Vol 2 (pp. 1941–1947). Thirty-Eighth Asilomar Conference on Signals, Systems and Computers 2004.
Borislav B., Yuan Xu (2002) On a hermite interpolation by polynomials of two variables. SIAM Journal of Numerical Analaysis 39: 1780–1793
Borislav B., Yuan X. (2003) On polynomial interpolation of two variables. Journal of Approximation Theory 120(2): 267–282
Buslowicz M. (1981) Inversion of polynomial matrices. International Journal of Control 33(5): 977–984
Downs T. (1971) On the inversion of a matrix of rational functions. Linear Algebra and Application 4: 1–10
Dudgeon D., Mersereau R. (1984) Multidimensional digital signal processing. Prentice Hall, Englewood Cliffs
Fragulis G., Mertzios B. G., Vardulakis A. I. G. (1991) Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion. International Journal of Control 53: 431–433
Frigo M., & Johnson S. (1998) FFTW: An adaptive software architecture for the FFT (pp. 1381–1384). in. ICASSP Conference Proceedings 3.
Gasca M., Martinez Jose J. (1992) Bivariate Hermite-Birkhoff interpolation and vandermonde determinants. Numerical Algorithms 2: 193–199
Gasca M., Sauer T. (2000a) On the history of multivariate polynomial interpolation, numerical analysis 2000, Vol. II: Interpolation and extrapolation. Journal of Computation Application in Mathematics 122(1-2): 23–35
Gasca M., Sauer T. (2000b) Polynomial interpolation in several variables. Multivariate polynomial interpolation. Advances in Computational Mathematics 12: 377–410
Hakopian H., Ismail S. (2002) On a bivariate interpolation problem. Journal of Approximation Theory 116: 76–99
Hromcik, M., & Sebek, M. (2001). Fast fourier transform and linear polynomial matrix equations. Proceedings of the 1rst IFAC Workshop on Systems Structure and Control, Prague, Czech Republic.
Kaczorek, T. (1985). Two-dimensional linear systems. Lecture notes in control and information sciences. Springer-Verlag New York.
Karampetakis N. P., Vologiannidis S. (2003) DFT calculation of the generalized and Drazin inverse of a polynomial matrix. Applied Mathematics and Computation 143: 501–521
Karampetakis N. P., Vologiannidis S. (2003) DFT calculation of the generalized and Drazin inverse of a polynomial matrix. Applied Mathematics and Computation 143: 501–521
Koo C. S., Chen C. T. (1977) Faddeeva’s algorithm for spatial dynamic equations. Proceedings of IEEE 65: 975–976
Kronecker, L. (1865) Über einige Interpolationsformeln für ganze Funktionen mehrerer Variabeln. Lecture at the academy of sciences, December 21, 1865, In H. Hensel (Ed.), L. Kroneckers Werke, Vol. I, Teubner, Stuttgart, 1895, pp. 133–141. (reprinted by Chelsea, New York, 1968).
Kucera V. (1979) Discrete linear control: The polynomial approach. Wiley, New York
Lin C. A., Yang C. W., Hsieh T. F. (1996) Inversion of polynomial matrices. Systems & Control Letters 27: 47–54
Lipson John, D. (1976) The fast fourier transform, Its role as an algebraic algorithm. Proceedings of the ACM Annual Conference/Annual Meeting (pp. 436–441).
Lobo R., Bitzer D. L., Vouk M. A. (2006) Locally invertible multivariate polynomial matrices. Coding and Cryptography, Lecture Notes in Computer Science 3969: 427–441
Mertzios B. G. (1984) Leverrier’s algorithm for singular systems. IEEE Transactions on Automatic Control 29: 652–653
Mertzios B. G. (1986) An algorithm for the computation of the transfer function matrix of two dimensional systems. Journal of Franklin Inst 32: 74–80
Mertzios B. G., Lewis F. (1988) An algorithm for the computation of the transfer function matrix of generalized two dimensional systems. Circuit Systems and Signal Process 7: 459–466
Nam O. T., Ohta Y., Matsumoto T. (1978) Inversion of rational matrices by using FFT algorithm. Transaction on IECE Japan E 61: 732–733
Paccagnella L. E., Pierobon G. L. (1976) FFT calculation of a determinantal polynomial. IEEE Transaction on Automatic Control 29(3): 401–402
Schuster A., Hippe P. (1992) Inversion of polynomial matrices by interpolation. IEEE Transactions on Automatic Control 37: 363–365
Stefanidis P., Paplinski A. P., Gibbard M. J. (1992) Numerical operations with polynomial matrices, lecture notes in control and information sciences (Vol. 171). Springer, Berlin
Tzekis P., Karampetakis N. P., Terzidis H. K. (2007) On the computations of the G.C.D of 2-d polynomials. Journal of Applied Mathematics and Computer Science 17: 463–470
Vidyasagar M. (1985) Control systems synthesis: A factorization approach. M.I.T, Cambridge, MA
Vologiannidis S., Karampetakis N. P. (2004) Inverses of multivariable polynomial matrices by discrete fourier transforms. Multidimensional Systems and Signal Processing 15: 341–361
Wolovich W. A. (1974) Linear multivariable systems. Springer, New-York
Zadeh L. A., Desoer C. A. (1963) Linear system theory. McGraw-Hill, New York
Zhang S. (1987) Inversion of polynomial matrices. International Journal of Control 46: 33–37
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karampetakis, N.P., Evripidou, A. On the computation of the inverse of a two-variable polynomial matrix by interpolation. Multidim Syst Sign Process 23, 97–118 (2012). https://doi.org/10.1007/s11045-010-0102-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-010-0102-7