Skip to main content

Advertisement

Log in

On the computation of the inverse of a two-variable polynomial matrix by interpolation

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Two interpolation algorithms are presented for the computation of the inverse of a two variable polynomial matrix. The first interpolation algorithm, is based on the Lagrange interpolation method that matches pre-assigned data of the determinant and the adjoint of a two-variable polynomial matrix, on a set of points on several circles centered at the origin. The second interpolation algorithm is using discrete fourier transforms (DFT) techniques or better fast fourier transforms which are very efficient algorithms available both in software and hardware and that they are greatly benefitted by the existence of a parallel environment (through symmetric multiprocessing or other techniques). The complexity of both algorithms is discussed and illustrated examples are given. The DFT-algorithm is implemented in the Mathematica programming language and tested in comparison to the respective built-in function of Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Antoniou G. E., Glentis G. O. A., Varoufakis S. J., Karras D. A. (1989) Transfer function determination of singular systems using the DFT. IEEE Transaction on Circuits and Systems 36(8): 1140–1142

    Article  MathSciNet  Google Scholar 

  • Antoniou E. G. (2001) Transfer function computation for generalized N-dimensional systems. Journal of the Franklin Institute 338: 83–90

    Article  MATH  MathSciNet  Google Scholar 

  • Basilio J. C. (2002) Inversion of polynomial matrices via state-space. Linear Algebra and its Applications 357: 259–271

    Article  MATH  MathSciNet  Google Scholar 

  • Borchardt, W. (1860). Über eine Interpolationsformel f ür eine Art symmetrischer Funktionen und deren Anwendung (pp. 1–20), Abh. d. Preu β. Akad. d. Wiss..

  • Borgmann M., & Bolcskei H. (2004) Interpolation-based efficient matrix inversion for MIMO-OFDM receivers, Vol 2 (pp. 1941–1947). Thirty-Eighth Asilomar Conference on Signals, Systems and Computers 2004.

  • Borislav B., Yuan Xu (2002) On a hermite interpolation by polynomials of two variables. SIAM Journal of Numerical Analaysis 39: 1780–1793

    Article  MATH  Google Scholar 

  • Borislav B., Yuan X. (2003) On polynomial interpolation of two variables. Journal of Approximation Theory 120(2): 267–282

    Article  MATH  MathSciNet  Google Scholar 

  • Buslowicz M. (1981) Inversion of polynomial matrices. International Journal of Control 33(5): 977–984

    Article  MATH  MathSciNet  Google Scholar 

  • Downs T. (1971) On the inversion of a matrix of rational functions. Linear Algebra and Application 4: 1–10

    Article  MATH  MathSciNet  Google Scholar 

  • Dudgeon D., Mersereau R. (1984) Multidimensional digital signal processing. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Fragulis G., Mertzios B. G., Vardulakis A. I. G. (1991) Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion. International Journal of Control 53: 431–433

    Article  MATH  MathSciNet  Google Scholar 

  • Frigo M., & Johnson S. (1998) FFTW: An adaptive software architecture for the FFT (pp. 1381–1384). in. ICASSP Conference Proceedings 3.

  • Gasca M., Martinez Jose J. (1992) Bivariate Hermite-Birkhoff interpolation and vandermonde determinants. Numerical Algorithms 2: 193–199

    Article  Google Scholar 

  • Gasca M., Sauer T. (2000a) On the history of multivariate polynomial interpolation, numerical analysis 2000, Vol. II: Interpolation and extrapolation. Journal of Computation Application in Mathematics 122(1-2): 23–35

    Article  MATH  MathSciNet  Google Scholar 

  • Gasca M., Sauer T. (2000b) Polynomial interpolation in several variables. Multivariate polynomial interpolation. Advances in Computational Mathematics 12: 377–410

    Article  MATH  MathSciNet  Google Scholar 

  • Hakopian H., Ismail S. (2002) On a bivariate interpolation problem. Journal of Approximation Theory 116: 76–99

    Article  MATH  MathSciNet  Google Scholar 

  • Hromcik, M., & Sebek, M. (2001). Fast fourier transform and linear polynomial matrix equations. Proceedings of the 1rst IFAC Workshop on Systems Structure and Control, Prague, Czech Republic.

  • Kaczorek, T. (1985). Two-dimensional linear systems. Lecture notes in control and information sciences. Springer-Verlag New York.

  • Karampetakis N. P., Vologiannidis S. (2003) DFT calculation of the generalized and Drazin inverse of a polynomial matrix. Applied Mathematics and Computation 143: 501–521

    Article  MATH  MathSciNet  Google Scholar 

  • Karampetakis N. P., Vologiannidis S. (2003) DFT calculation of the generalized and Drazin inverse of a polynomial matrix. Applied Mathematics and Computation 143: 501–521

    Article  MATH  MathSciNet  Google Scholar 

  • Koo C. S., Chen C. T. (1977) Faddeeva’s algorithm for spatial dynamic equations. Proceedings of IEEE 65: 975–976

    Article  Google Scholar 

  • Kronecker, L. (1865) Über einige Interpolationsformeln für ganze Funktionen mehrerer Variabeln. Lecture at the academy of sciences, December 21, 1865, In H. Hensel (Ed.), L. Kroneckers Werke, Vol. I, Teubner, Stuttgart, 1895, pp. 133–141. (reprinted by Chelsea, New York, 1968).

  • Kucera V. (1979) Discrete linear control: The polynomial approach. Wiley, New York

    MATH  Google Scholar 

  • Lin C. A., Yang C. W., Hsieh T. F. (1996) Inversion of polynomial matrices. Systems & Control Letters 27: 47–54

    Article  MATH  MathSciNet  Google Scholar 

  • Lipson John, D. (1976) The fast fourier transform, Its role as an algebraic algorithm. Proceedings of the ACM Annual Conference/Annual Meeting (pp. 436–441).

  • Lobo R., Bitzer D. L., Vouk M. A. (2006) Locally invertible multivariate polynomial matrices. Coding and Cryptography, Lecture Notes in Computer Science 3969: 427–441

    MathSciNet  Google Scholar 

  • Mertzios B. G. (1984) Leverrier’s algorithm for singular systems. IEEE Transactions on Automatic Control 29: 652–653

    Article  MATH  MathSciNet  Google Scholar 

  • Mertzios B. G. (1986) An algorithm for the computation of the transfer function matrix of two dimensional systems. Journal of Franklin Inst 32: 74–80

    Google Scholar 

  • Mertzios B. G., Lewis F. (1988) An algorithm for the computation of the transfer function matrix of generalized two dimensional systems. Circuit Systems and Signal Process 7: 459–466

    Article  MATH  MathSciNet  Google Scholar 

  • Nam O. T., Ohta Y., Matsumoto T. (1978) Inversion of rational matrices by using FFT algorithm. Transaction on IECE Japan E 61: 732–733

    Google Scholar 

  • Paccagnella L. E., Pierobon G. L. (1976) FFT calculation of a determinantal polynomial. IEEE Transaction on Automatic Control 29(3): 401–402

    Article  Google Scholar 

  • Schuster A., Hippe P. (1992) Inversion of polynomial matrices by interpolation. IEEE Transactions on Automatic Control 37: 363–365

    Article  MathSciNet  Google Scholar 

  • Stefanidis P., Paplinski A. P., Gibbard M. J. (1992) Numerical operations with polynomial matrices, lecture notes in control and information sciences (Vol. 171). Springer, Berlin

    Google Scholar 

  • Tzekis P., Karampetakis N. P., Terzidis H. K. (2007) On the computations of the G.C.D of 2-d polynomials. Journal of Applied Mathematics and Computer Science 17: 463–470

    MATH  MathSciNet  Google Scholar 

  • Vidyasagar M. (1985) Control systems synthesis: A factorization approach. M.I.T, Cambridge, MA

    Google Scholar 

  • Vologiannidis S., Karampetakis N. P. (2004) Inverses of multivariable polynomial matrices by discrete fourier transforms. Multidimensional Systems and Signal Processing 15: 341–361

    Article  MATH  MathSciNet  Google Scholar 

  • Wolovich W. A. (1974) Linear multivariable systems. Springer, New-York

    Book  MATH  Google Scholar 

  • Zadeh L. A., Desoer C. A. (1963) Linear system theory. McGraw-Hill, New York

    MATH  Google Scholar 

  • Zhang S. (1987) Inversion of polynomial matrices. International Journal of Control 46: 33–37

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas P. Karampetakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karampetakis, N.P., Evripidou, A. On the computation of the inverse of a two-variable polynomial matrix by interpolation. Multidim Syst Sign Process 23, 97–118 (2012). https://doi.org/10.1007/s11045-010-0102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-010-0102-7

Keywords