Skip to main content
Log in

A primal-dual gradient method for image decomposition based on (BV, H −1)

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The main aim of this paper is to accelerate the image decomposition model based on (BV, H −1). It is solved with a particularly effective primal-dual gradient descent algorithm. The algorithm works on the primal-dual formulation and exploits the information of the primal and dual variables simultaneously. It converges significantly faster than some popular existing methods in numerical experiments. This approach is to some extent related to projection type methods for solving variational inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Acar R., Vogel C. R. (1994) Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10: 1217–1229

    Article  MathSciNet  MATH  Google Scholar 

  • Aujol, J.-F., Aubert, G., Blanc-Feraud, L., & Chambolle, A. (2003). Image decomposition: Application to textu-red images and SAR images. Rapport de Recherche RR 4704, INRIA, January 2003.

  • Aujol J.-F., Chambolle A. (2005) Dual norms and image decomposition models. International Journal of Computer Vision 63(1): 85–104

    Article  MathSciNet  Google Scholar 

  • Bioucas-Dias J., Figueiredo M. (2007) Thresholding algorithms for image restoration. IEEE Transactions on Image processing 16(12): 2980–2991

    Article  MathSciNet  Google Scholar 

  • Chambolle A., Lions P. L. (1997) Image recovery via total variation minimization and related problems. Numerische Mathematik 76(3): 167–188

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle A. (2004) An algorithm for total variation minimization and its applications. Journal of Mathematical Imaging and Vision 20: 89–97

    Article  MathSciNet  Google Scholar 

  • Chan T., Golub G., Mulet P. (1999) A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing 20(6): 1964–1977

    Article  MathSciNet  MATH  Google Scholar 

  • Charbonnier P., Blanc-Feraud L., Aubert G., Barlaud M. (1997) Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing 6(2): 298–311

    Article  Google Scholar 

  • Combettes P. L., Pesquet J. (2004) Image restoration subject to a total variation constraint. IEEE Transactions on Image Processing 13(9): 1213–1222

    Article  Google Scholar 

  • Darbon J., Sigelle M. (2006) Image restoration with discrete constrained total variation part I: Fast and exact optimization. Journal of Mathematical Imaging and Vision 26(3): 277–291

    Article  MathSciNet  Google Scholar 

  • Daubechies I., Defrise M., De Mol C. (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics 57: 1413–1457

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies I., Teschke G., Vese L. (2007) Iteratively solving linear inverse problems under general convex constraints. Inverse Problems and Imaging 1(1): 29–46

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies I., Teschke G. (2004) Wavelet based image decomposition by variational functionals. Proceeding SPIE, Wavelet Applications in Industrial Processing 5266: 94–105

    Google Scholar 

  • Dobson D., Vogel C. (1997) Convergence of an iterative method for total variation denoising. SIAM Journal on Numerical Analysis 34: 1779–1791

    Article  MathSciNet  MATH  Google Scholar 

  • Hiriart-Urruty J.-B., Lemar′echal C. (1993) Convex analysis and minimization algorithms, vol. I. Springer-Verlag, Berlin & Heidelberg

    Google Scholar 

  • Meyer, Y. (2001). Oscillating patterns in image processing and nonlinear evolution equations. Vol. 22 of University Lecture Series. American Mathematical Society, Providence, RI.

  • Ng M. K., Qi L., Yang Y. F., Huang Y. (2007) On semismooth Newton methods for total variation minimization. Journal of Mathematical Imaging and Vision 27(3): 265–276

    Article  MathSciNet  Google Scholar 

  • Nikolova M., Chan R. (2007) The equivalence of half-quadratic minimization and the gradient linearization iteration. IEEE Transactions on Image Processing 16(6): 1623–1627

    Article  MathSciNet  Google Scholar 

  • Osher S., Sole A., Vese L. (2003) Image decomposition and restoration using total variation minimization and the H −1 norm. Multiscale Modeling and Simulation 1(3): 349–370

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin L., Osher S., Fatemi E. (1992) Nolinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60: 59–268

    Article  Google Scholar 

  • Starck J.-L., Elad M., Donoho D. L. (2005) Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions Image Processing 14(10): 1570–1582

    Article  MathSciNet  Google Scholar 

  • Vese L. A., Osher S. J. (2003) Modeling textures with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing 19(1–3): 553–572

    Article  MathSciNet  MATH  Google Scholar 

  • Xiu N., Zhang J. (2003) Some recent advances in projection-type methods for variational inequalities. Journal of Computational and Applied Mathematics 152: 559–585

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqing Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Liu, H. A primal-dual gradient method for image decomposition based on (BV, H −1). Multidim Syst Sign Process 22, 335–348 (2011). https://doi.org/10.1007/s11045-011-0146-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-011-0146-3

Keywords