Skip to main content
Log in

Bregman iteration algorithm for sparse nonnegative matrix factorizations via alternating l 1-norm minimization

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Sparse nonnegative matrix factorizations can be considered as dimension reduction methods that can control the degree of sparseness of basis matrix or coefficient matrix under non-negativity constraints. In this paper, by exploring the sparsity of the basis matrix and the coefficient matrix under certain domains, we propose an alternative iteration approach with l 1-norm minimization for face recognition. Moreover, a modified version of linearized Bregman iteration is developed to efficiently solve the proposed minimization problem. Experimental results show that new algorithm is promising in terms of detection accuracy, computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cai J.-F., Osher S., Shen Z. (2009a) Linearized Bregman iterations for compressed sensing. Mathematics of Computation 78: 1515–1536

    Article  MathSciNet  MATH  Google Scholar 

  • Cai J.-F., Osher S., Shen Z. (2009b) Linearized Bregman iterations for frame-based image deblurring. SIAM Journal on Imaging Sciences 2(1): 226–252

    Article  MathSciNet  MATH  Google Scholar 

  • Candès E., Romberg J., Tao T. (2006) Stable signal recovery from incomplete and inaccurate measurements. Communications Pure and Applied Mathematics 59(8): 1207–1223

    Article  MATH  Google Scholar 

  • Cichocki A., Zdunek R., Amari S. I. (2007) Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization. Springer LNCS 4666: 169–176

    Google Scholar 

  • Cichocki A., Zdunek R., Amari S. (2008) Nonnegative matrix and tensor factorization. IEEE Signal Processing Magazine 25(1): 142–145

    Article  Google Scholar 

  • Comon P. (1994) Indenpendent component analysis-a new concept?. Signal processing 36: 287–314

    Article  MATH  Google Scholar 

  • Donoho D. (2006) For most large underdetermined systems of linear equations the minimal l 1-norm solution is also the sparsest Solution. Communications Pure and Applied Mathematics 59(6): 797–829

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, T., Li, S. Z., & Shum, H.-Y., et al. (2002). Local nonnegative matrix factorization as a visual representation. In Proceedings of second international conference development and learning.

  • Goldstein, T., & Osher, S. (2008). The split bregman algorithm for L1 regularized problems. UCLA CAM Reports (08-29).

  • Guillamet D., Vitria J., Schiele B. (2003) Introducing a weighted non-negative matrix factorization for image classification. Pattern Recognition Letters 24: 2447–2454

    Article  MATH  Google Scholar 

  • Hoyer, P. O. (2002). Non-negative sparse coding. In Neural networks for signal processing XII (Proceedings of IEEE workshop on neural networks for signal processing) (pp. 557–565). Martigny, Switzerland.

  • Hoyer P. O. (2004) Nonnegative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5: 1457–1469

    MathSciNet  MATH  Google Scholar 

  • Kim H., Park H. (2007) Sparse non-negative matrix factorizations via alternating non-negativity- constrained least squares for microarray data analysis. Bioinformatics 23(12): 1495–1502

    Article  Google Scholar 

  • Lee D. D., Seung H. S. (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755): 788–791

    Article  Google Scholar 

  • Lee D. D., Seung H. S. (2001) Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing 13: 556–562

    Google Scholar 

  • Liu, W., Zheng, N., & Lu, X. (2003). Non-negative matrix factorization for visual coding. In Proceedings of IEEE international conference on acoustics, speech and signal processing.

  • Neo, H. F., Teoh, B. J., & Ngo, C. L. (2004). Face recognition using wavelet transform and non-negative matrix factorization. Lecture note on AI, vol. 3339 (pp. 192–202), Berlin: Springer.

  • Osher S., Burger M., Goldfarb D., Xu J., Yin W. (2005) An iterative regularization method for total variation-based image restoration. Multiscale Model and Simulation 4: 460–489

    Article  MathSciNet  MATH  Google Scholar 

  • Osher, S., Mao, Y., Dong, B., & Yin, W. (2008). Fast linearized bregman iteration for compressed sensing and sparse denoising. UCLA CAM Reports (08-37).

  • Pauca, V. P., & Shahnaz, F., et al. (2004). Text mining using non-negative matrix factorizations. In Proceedings of SIAM international conference data mining, April.

  • Pauca V. P., Piper J., Plemmons R. J. (2006) Nonnegative matrix factorization for spectral data analysis. Linear Algebra and Applications 416(1): 29–47

    Article  MathSciNet  MATH  Google Scholar 

  • Pascual-Montano A., Carazo J. M., Kochi K. et al (2006) Nonsmooth nonnegative matrix factorization (nsNMF). IEEE Transactions on PAMI 28(3): 403–415

    Article  Google Scholar 

  • Penev P., Atick J. (1996) Local feature analysis: A general statistical theory for object representation. Neural Systems 7(3): 477–500

    Article  MATH  Google Scholar 

  • Tibshirani R. (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B 58(1): 267–288

    MathSciNet  MATH  Google Scholar 

  • Turk M., Pentland A. (1991) Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1): 71–86

    Article  Google Scholar 

  • Wright J., Yang A. Y., Ganesh et.al A. (2009) Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2): 210–227

    Article  Google Scholar 

  • Yin W., Osher S., Goldfarb D., Darbon J. (2008) Bregman iterative algorithms for l 1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences 1: 143–168

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Yin, H. Bregman iteration algorithm for sparse nonnegative matrix factorizations via alternating l 1-norm minimization. Multidim Syst Sign Process 23, 315–328 (2012). https://doi.org/10.1007/s11045-011-0147-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-011-0147-2

Keywords

Navigation