Abstract
Bio-inspired edge detection using fuzzy logic has achieved great attention in the recent years. The bacterial foraging (BF) algorithm, introduced in Passino (IEEE Control Syst Mag 22(3):52–67, 2002) is one of the powerful bio-inspired optimization algorithms. It attempts to imitate a single bacterium or groups of E. Coli bacteria. In BF algorithm, a set of bacteria forages towards a nutrient rich medium to get more nutrients. A new edge detection technique is proposed to deal with the noisy image using fuzzy derivative and bacterial foraging algorithm. The bacteria detect edge pixels as well as noisy pixels in its path during the foraging. The new fuzzy inference rules are devised and the direction of movement of each bacterium is found using these rules. During the foraging if a bacterium encounters a noisy pixel, it first removes the noisy pixel using an adaptive fuzzy switching median filter in Toh and Isa (IEEE Signal Process Lett 17(3):281–284, 2010). If the bacterium does not encounter any noisy pixel then it searches only the edge pixel in the image and draws the edge map. This approach can detect the edges in an image in the presence of impulse noise up to 30%.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abdallah A. A., Ayman A. A. (2009) Edge detection in digital images using fuzzy logic techniques. World Academy of Science, Engineering and Technology, Turkey, pp 178–186
Biswas A., Dasgupta S., Das S., Abrahamy A. (2007) A synergy of differential evolution and bacterial foraging algorithm for global optimization. International Journal on Neural and Mass-Parallel Computing and Information Systems, Neural Network World 17(6): 607–626
Canny J. F. (1986) A computational approach to edge detection. IEEE Transactions Pattern Analysis and Machine Intelligence 8(6): 679–698
Civicioglu P., Alci M. (2004) Edge detection of highly distorted image suffering from impulse noise. International Journal of Electronics and Communications 58(6): 413–419
Cox E. (1992) Fuzzy fundamentals spectrum. Spectrum IEEE 29(10): 58–61
Danafar, S., Sheikh, L. T., & Moghadam, A. M. E. (2006). A new approach for edge detection based on fuzzy rules. In Proceedings of the international conference on artificial intelligence, Las Vegas, USA.
Dasgupta, S., Biswas, A., Das, S., & Abraham, A. (2008). Automatic circle detection on images with an adaptive bacterial foraging algorithm. In Proceedings of the 10th annual conference on Genetic and evolutionary computation (pp. 1695–1696).
Dasgupta S., Biswas A., Abraham A., Das S. (2009) Adaptive computational chemotaxis in bacterial foraging optimization. IEEE Transactions on Evolutionary Computation 13(4): 919–941
Datta T., Misra I. S., Mangaraj B. B., Imtiaj S. (2008) Improved adaptive bacteria foraging algorithm in optimization of antenna array for faster convergence. Progress In Electromagnetics Research C 1: 143–157
Dorigo, M., Colorni, A, & Maniezzo, V. (1991). Positive feedback as a search strategy. Technical report no. 91-016, Politecnico di Milano, Italy.
Gonzalez R. C., Woods R. E. (2008) Digital image processing. Pearson Education, Boston
Gudmundsson M., El-Kwae E. A., Kabuka M. R. (1998) Edge detection in medical images using genetic algorithm. IEEE Transactions on Medical Imaging 17(3): 469–474
Guo S. M., Lee C. S., Hsu C. Y. (2005) An intelligent image agent based on soft-computing techniques for color image processing. Expert Systems with Applications 28(3): 483–494
Hanmandlu, M., Nath, A. V., Mishra, A. C., & Madasu, V. K. (2007). Fuzzy model based recognition of handwritten hindi numerals using bacterial foraging. In Proceedings of the 6th IEEE/ACIS international conference computer and information science (pp. 309–314).
Hanmandlu M., Verma O. P., Kumar N. K., Kulkarni M. (2009) A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Transactions on Instrumentation and Measurement 58(8): 2867–2879
Ho S. L., Yang S., Ni G., Machado J. M. (2006) A modified ant colony optimization algorithm modeled on tabu search methods. IEEE Transactions on Magnetics 42(4): 1195–1198
Kim D. H., Abraham A., Cho J. H. (2007) A hybrid genetic algorithm and bacterial foraging approach for global optimization. Information Sciences 177(18): 3918–3937
Kim, D. H., & Cho, C. H. (2005). Bacterial foraging based neural network fuzzy learning. In Proceedings of Indian international conference on artificial intelligence. (pp. 2030–2036).
Lee C. S., Guo S. M., Hsu C. Y. (2005) Genetic-based fuzzy image filter and its application to image processing. IEEE Transactions on Systems, Man, and Cybernetics, Part B, Cybernetics 35(4): 697–711
Lu D.-S., Chen C. C. (2008) Edge Detection improvement by ant colony optimization. Pattern Recognition Letters 29(4): 416–425
Luo W. (2006) Efficient removal of impulse noise from digital images. IEEE Transactions On Consumer Electronics 52(2): 523–524
Mishra S. (2005) A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. IEEE Transactions on Evolutionary Computation 9(1): 61–73
Nalawa V. S. (1993) A guided tour of computer vision. Addison-Wesley, Reading, MA, USA
Passino K. M. (2002) Biomimicry of bacterial foraging for distributed optimization control. IEEE Control System Magazine 22(3): 52–67
Roomi S. M. M., Karuppi P. L. M., Rajesh P., Revathi B. G. (2010) A particle swarm optimization based edge preserving impulse noise filter. Journal of Computer Science 6(9): 1014–1020
Russo F. (1998) Edge detection in noisy images using fuzzy reasoning. IEEE Transactions on Instrumentation and Measurement 47(5): 1102–1105
Schulte S., Nachtegael M., De Witte V., Vander Weken D., Kerre E. E. (2006) A fuzzy impulse noise detection and reduction method. IEEE Transaction Image Processing 15(5): 1153–1162
Setayesh, M., Zhang, M., Jonhston, M. (2009). A new homogeneity-based approach to edge detection using PSO. In Proceedings of 24th international conference image and vision computing, pp. 231–236.
Toh K. K. V., Ibrahim H., Mahyuddin M. N. (2008) Salt-and-pepper noise detection and reduction using fuzzy switching median filter. IEEE Transaction Consumer Electronics 54(4): 1956–1961
Toh K. K. V., Isa N. A. M. (2010) Noise adaptive fuzzy switching median filter for salt- and-pepper noise reduction. IEEE Signal Processing Letters 17(3): 281–284
Tripathy M., Mishra S., Lai L. L., Zhang Q. P. (2006) Transmission loss reduction based on facts and bacteria foraging algorithm. Parallel Problem Solving from Nature 4193: 222–231
Verma, O. P., Hanmandlu, M., Kumar, P., & Srivashtava, S. (2009a). A novel approach for edge detection using ant colony optimization and fuzzy derivative technique. In Proceedings of the IEEE international advance computing conference. (pp. 1206–1212).
Verma O. P., Hanmandlu M., Parihar A. S., Madasu V. K. (2009b) Fuzzy filters for noise reduction in color images. ICGST-GVIP Journal 9(5): 29–43
Verma, O. P., Parihar A. S., & Hanmandlu, M. (2010a). Edge preserving fuzzy filter for color images. In Proceedings of the international conference on computational intelligence and communication networks (pp. 122-127).
Verma, O. P., Hanmandlu, M., Sultania, A. K., & Dhruv, D. (2010b). A novel fuzzy ant system for edge detection. In Proceedings of IEEE/ACIS 9th international conference on computer and information science (pp. 228–233).
Verma O. P., Hanmandlu M., Kumar P., Chhabra S., Jindal A. (2011) A novel bacterial foraging technique for edge detection. Pattern Recognition Letters 32(8): 1187–1196
Yuksel M. E. (2007) Edge detection in noisy images by neuro-fuzzy processing. International Journal of Electronics and Communications 61(2): 82–89
Zadeh L. A. (1965) Fuzzy sets. Information & Control 8(3): 338–353
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Verma, O.P., Hanmandlu, M., Sultania, A.K. et al. A novel fuzzy system for edge detection in noisy image using bacterial foraging. Multidim Syst Sign Process 24, 181–198 (2013). https://doi.org/10.1007/s11045-011-0164-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-011-0164-1