Skip to main content
Log in

Despeckling low SNR, low contrast ultrasound images via anisotropic level set diffusion

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Speckle is a form of multiplicative and locally correlated noise which degrades the signal-to-noise ratio (SNR) and contrast resolution of ultrasound images. This paper presents a new anisotropic level set method for despeckling low SNR, low contrast ultrasound images. The coefficient of variation, a speckle-robust edge detector is embedded in the well known geodesic “snakes” model to smooth the image level sets, while preserving and sharpening edges of a speckled image. The method achieves much better speckle suppression and edge preservation compared to the traditional anisotropic diffusion based despeckling filters. In addition, the performance of the filter is less sensitive to the speckle scale of the image and edge contrast parameter, which makes it more suitable for the detection of low contrast features in an ultrasound image. We validate the method using both synthetic and real ultrasound images and quantify the performance improvement over other state-of-the-art algorithms in terms of speckle noise reduction and edge preservation indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez L., Lions P., Morel J. (1992) Image selective smoothing and edge detection by nonlinear diffusion ii. SIAM Journal on Numerical Analysis 29: 845–866

    Article  MATH  MathSciNet  Google Scholar 

  • Angenent S. (1991) Parabolic equations for curves on surfaces, part ii. Intersections, blow-up, and generalized solutions. Annals of Mathematics 133: 171–215

    Article  MATH  MathSciNet  Google Scholar 

  • Aubert G., Aujol J. F. (2008) A variational approach to removing multiplicative noise. SIAM Journal on Applied Mathematics 68(4): 925–946

    Article  MATH  MathSciNet  Google Scholar 

  • Bamber J. C., Daft C. (1986) Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images. Ultrasonics 46(3): 41–44

    Article  Google Scholar 

  • Bernardes R., Maduro C., Serranho P., Araujo A., Barbeiro S., Cunha-Vaz J. (2010) Improved adaptive complex diffusion despeckling filter. Optics Express 18: 24,048–24,059

    Article  Google Scholar 

  • Bovik A. C. (1988) On detecting edges in speckle imagery. IEEE Transactions on Acoustics, Speech and Signal Processing 36: 1618–1627

    Article  MATH  Google Scholar 

  • Brooks R. A., Bovik A. C. (1990) Robust techniques for edge detection in multiplicative weibull image noise. Pattern Recognition 23: 1047–1057

    Article  Google Scholar 

  • Buades A., Coll B., Morel J. M. (2005) A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation 4(2): 490–530

    Article  MATH  MathSciNet  Google Scholar 

  • Caselles V., Kimmel R., Sapiro G. (1997) Geodesic active contours. International Journal of Computer Vision 22(1): 61–79

    Article  MATH  Google Scholar 

  • Catte F., Coll T., Lions P., Morel J. M. (1992) Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 29: 182–193

    Article  MATH  MathSciNet  Google Scholar 

  • Chan T. F., Vese L. A. (2001) Active contours without edges. IEEE Transactions on, Image Processing 10: 266–277

    Article  MATH  Google Scholar 

  • Chen Y., Vemuri B. C., Wang L. (2000) Image denoising and segmentation via nonlinear diffusion. Computers and mathematics with applications 39: 131–149

    Article  MathSciNet  Google Scholar 

  • Coupe P., Hellier P., Kervrann C., Barillot C. (2009) Nonlocal means-based speckle filtering for ultrasound images. IEEE Transactions on Image Processing 18(10): 2221–2229

    Article  MathSciNet  Google Scholar 

  • Deledalle C. A., Denis L., Tupin F. (2009) Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Transactions on Image Processing 18(12): 2661–2672

    Article  MathSciNet  Google Scholar 

  • Dutt V., Greenleaf J. F. (1994) Ultrasound echo envelope analysis using a homodyned k distribution signal model. Ultrasonic Imaging 16: 265–287

    Google Scholar 

  • Fernandez S. A., Lopez C. A. (2006) On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Transactions on Image Processing 15: 2694–2701

    Article  Google Scholar 

  • Frost V. S., Stiles J. A., Shanmugan K. S., Holtzman J. C. (1982) A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis Machine Intelligence 4: 157–165

    Article  Google Scholar 

  • Gao S., Bui T. D. (2005) Image segmentation and selective smoothing by using Mumford-Shah model. IEEE Transactions on Image Processing 14: 1537–1549

    Article  Google Scholar 

  • Gilboa G., Sochen N., Zeevi Y. Y. (2004) Image enhancement and denoising by complex diffusion process. IEEE Transactions on Pattern Analysis and Machine Intelligence 26: 1020–1036

    Article  Google Scholar 

  • Gupta S., Chauhan R., Sexana S. (2004) Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Medical and Biological Engineering Computing 42(2): 189–192

    Article  Google Scholar 

  • Hao X., Gao S., Gao X. (1999) A novel multiscale nonlinear thresholding method for ultrasound speckle suppressing. IEEE Transactions on, Medical Imaging 18: 787–794

    Article  Google Scholar 

  • Huang Y., Ng M., Wen Y. (2009) A new total variation method for multiplicative noise removal. SIAM Journal on Imaging Sciences 2: 20–40

    Article  MATH  MathSciNet  Google Scholar 

  • Jakeman E., Tough R. J. A. (1987) Generalized k distribution: A statistical model for weak scattering. Journal of the Optical Society of America 4: 1764–1772

    Google Scholar 

  • Jakowatz C., Wahl D., Eichel P., Ghiglia D., Thompson P. (1996) Spotlight-mode synthetic aperture radar: A signal processing approach. Kluwer, Norwell, MA

    Book  Google Scholar 

  • Jin Z., Yang X. (2011) A variational approach to remove the multiplicative noise in ultrasound images. Journal of Mathematical Imaging and Vision, 39(1): 62–74

    Article  MATH  MathSciNet  Google Scholar 

  • Karaman M., Kutay M. A., Bozdagi G. (1995) An adaptive speckle suppression filter for medical ultrasonic imaging. IEEE Transactions on Medical Imaging 14: 283–292

    Article  Google Scholar 

  • Khare A., Khare M., Jeong Y., Kim H., Jeon M. (2010) Despeckling of medical ultrasound images using daubechies complex wavelet transform. Signal Processing 90: 428–439

    Article  MATH  Google Scholar 

  • Krissian K., Westin C., Kikinis R., Vosburgh K. (2007) Oriented speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing 16(5): 1412–1424

    Article  MathSciNet  Google Scholar 

  • Kuan D., Sawchuck A., Strand T., Chavel P. (1985) Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Transactions on Pattern Analysis and Machine Intelligence 7(2): 165–177

    Article  Google Scholar 

  • Lee J. S. (1980) Digital image enhancement and noise filtering by using local statistics. IEEE Transactions on Pattern Analysis Machine Intelligence 2: 165–178

    Article  Google Scholar 

  • Li H., Huang B., Huang X. (2010) A level set filter for speckle reduction in SAR images. EURASIP Journal on Advances in Signal Processing 20: 45–78

    Google Scholar 

  • Loupas T., Mcdicken W., Allen P. (1989) An adaptive weighted median filter for speckle suppression in medical ultrasound images. IEEE Transactions on Circuits and Systems 36(1): 129–135

    Article  Google Scholar 

  • Malladi R., Sethian J., Vemuri B. (1996) A fast level set based algorithm for topology-independent shape modeling. Journal of Mathematical Imaging and Vision 6: 269–289

    Article  MathSciNet  Google Scholar 

  • Malladi R., Sethian J. A. (1995) Image processing via level set curvature flow. Proceedings of the National Academy of USA 92: 7046–7050

    Article  MATH  MathSciNet  Google Scholar 

  • Malladi R., Sethian J. A. (1996) A unified approach to noise removal, image enhancement, and shape recovery. IEEE Transactions on Image Processing 5: 1554–1568

    Article  Google Scholar 

  • Malladi R., Sethian J. A., Vemuri B. C. (1995) Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17: 158–174

    Article  Google Scholar 

  • Marquina A., Osher S. (2000) Explicit algorithms for a new time-depandant model based on level set motion for non linear deblurring and noise removal. SIAM Journal on Scientific Computing, 22(2): 387–405

    Article  MATH  MathSciNet  Google Scholar 

  • Oliver C., Quegan S. (1998) Understanding synthetic aperture radar images. Artech House, Norwood, MA

    Google Scholar 

  • Osher S., Fedkiw R. P. (2002) Level set methods and dynamic implicit surfaces. Applied mathematical sciences. Springer, New York

    Google Scholar 

  • Osher S., Sethian J. A. (1988) Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulation. Journal of Computational Physics 79: 12–49

    Article  MATH  MathSciNet  Google Scholar 

  • Perona P., Malik J. (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7): 629–639

    Article  Google Scholar 

  • Pizurica A., Philips W., Lemahieu I., Acheroy M. (2003) A versatile wavelet domain noise filtration technique for medical imaging. IEEE Transactions on, Medical Imaging 22(3): 323–331

    Article  Google Scholar 

  • Porcello L. J., Massey N. G., Innes R. B., Marks J. M. (1976) Speckle reduction in synthetic-aperture radars. Journal of the Optical Society of America 66: 1305–1311

    Article  Google Scholar 

  • Rudin L., Osher S., Fatemi E. (1992) Nonlinear total variation based noise removal algorithms. Physica D 60: 259–268

    Article  MATH  Google Scholar 

  • Salinas H. M., Fern’andez D. C. (2007) Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography. IEEE Transactions on Medical Imaging 26: 761–771

    Article  Google Scholar 

  • Sapiro G. (1996) Vector(self) snakes: A geometric framework for color, texture and multiscale image segmentation. Proceedings, IEEE International Conference on Image Processing 1: 817–820

    Article  Google Scholar 

  • Sattar F., Floreby L., Salomonsson G., Lovstrom B. (1997) Image enhancement based on a nonlinear multiscale method. IEEE Transactions on Image processing 6: 888–895

    Article  Google Scholar 

  • Sethian J. A. (1999) Level set methods and fast marching methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Shankar P. M. (2000) A general statistical model for ultrasonic backscattering from tissues. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 47: 727–736

    Article  Google Scholar 

  • Smith S. M., Brady J. M. (1997) Susan-A new approach to low level image processing. International Journal for Computational Vision 23: 45–78

    Article  Google Scholar 

  • Suna Q., Hossackb J. A., Tangc J., Acton S. T. (2004) Speckle reducing anisotropic diffusion for 3d ultrasound images. Computerized Medical Imaging and Graphics 28: 461–470

    Article  Google Scholar 

  • Weickert, J. (1994). Anisotropic diffusion filters for image processing based quality control. In A. Fasano, & M. Primicerio (Eds.), Proceedings of the seventh European conference on mathematics in industry, pp. 355–362.

  • Weickert J. (1998) Anisotropic diffusion in image processing. Teubner, Stuttgart, Germany

    MATH  Google Scholar 

  • Whitaker, R. T., Xue, X. (2001). Variable-conductance, level-set curvature for image denoising. In Proceedings of 2001 IEEE international conference on image processing, pp. 142–145.

  • You Y. L., Kaveh M. (2000) Fourth-order partial differential equation for noise removal. IEEE Transactions on Image Processing 9(10): 1723–1730

    Article  MATH  MathSciNet  Google Scholar 

  • Yu, C., Zhang, C., Xie, L. (2012). A multiplicative nakagami speckle reduction algorithm for ultrasound images. Multidim. Syst. Sign. Process. doi:10.1007/s11045-012-0173-8 (published online, 02 February 2012).

  • Yu J., Tan J., Wang Y. (2010) Ultrasound speckle reduction by a susan-controlled anisotropic diffusion method. Pattern Recognition 43: 3083–3092

    Article  Google Scholar 

  • Yu Y., Acton S. (2002) Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing 11(11): 1260–1270

    Article  MathSciNet  Google Scholar 

  • Yu Y., Acton S. (2004) Edge detection in ultrasound imagery using the instantaneous coefficient of variation. Kluwer, Norwell, pp 1640–1655

    Google Scholar 

  • Yue Y., Croitoru M. M., Bidani A., Zwischenberger J. B., Clark J. W. (2006) Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images. IEEE Transactons on Medical Imaging 25: 297–311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bini, A.A., Bhat, M.S. Despeckling low SNR, low contrast ultrasound images via anisotropic level set diffusion. Multidim Syst Sign Process 25, 41–65 (2014). https://doi.org/10.1007/s11045-012-0184-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-012-0184-5

Keywords

Navigation