Skip to main content

Advertisement

Log in

Stability analysis for a class of complex dynamical networks with 2-D dynamics

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the problems of stability and decentralized control are studied for a class of linear coupled dynamical networks with Fornasini–Marchesini second local state-space dynamics. Necessary and sufficient stability conditions are obtained for a class of linear network composed by \(N\) identical nodes. Effects of the interconnection on stability of network are presented by eigenvalues of the topological matrix, and the effectiveness of interconnection on network stability is pointed out. Moreover, the decentralized control laws are presented for two types of linear regular networks: star-shaped coupled networks and globally coupled networks in detail. The relationships between the stability of a network and the stability of its corresponding nodes are studied. It is shown that some nodes must be made stable in order to stabilize the whole network in some cases. However, the detailed relationship is needed to be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bender, J. G. (1991). An overview of systems studies of automated highway systems. IEEE Transactions on Vehicle Technology, 40(1), 82–99.

    Article  Google Scholar 

  • Curtin, T. B., Bellingham, J. G., Catipovic, J., & Webb, D. (1993). Autonomous oceanographic sampling networks. Oceanography, 6(3), 86–94.

    Article  Google Scholar 

  • Duan, Z. S., Wang, J. Z., Chen, G. R., & Huang, L. (2007). Special decentralized control problems in discrete-time interconnected systems composed of two subsystems. System and Control Letters, 56(3), 206–214.

    Article  MATH  Google Scholar 

  • Duan, Z. S., Wang, J. Z., Chen, G. R., & Huang, L. (2008). Stability analysis and decentralized control of a class of complex dynamical networks. Automatica, 44(4), 1028–1035.

    Article  MATH  MathSciNet  Google Scholar 

  • Ebihara, Y., Ito, Y., & Hagiwara, T. (2006). Exact stability analysis of 2-D systems using LMIs. IEEE Transaction on Automatica Control, 51(9), 1509–1513.

    Article  MathSciNet  Google Scholar 

  • Fax, J. A., & Murray, R. M. (2004). Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 49(9), 1465–1476.

    Article  MathSciNet  Google Scholar 

  • Fornasini, E., & Marchesini, G. (1978). Doubly-indexed dynamical systems: State-space models and structural properties. Mathematical Systems Theory, 12(1), 59–72.

    Article  MATH  MathSciNet  Google Scholar 

  • Fornasini, E., & Marchesini, G. (1980). Stability analysis of 2-D systems. IEEE Transaction on Circuits and System, 27(12), 1210–1217.

    Article  MATH  MathSciNet  Google Scholar 

  • Galkowski, K., Rogers, E., Xu, S. Y., Lam, J., & Owens, D. H. (2002). LMIs-A fundamental tool in analysis and controller design for discrete linear repetitive processes. IEEE Transaction on Circuits System. I: Fundamental Theory and Applications, 49(6), 768–778.

    Article  MathSciNet  Google Scholar 

  • Galkowski, K., Xu, S. Y., Lam, J., & Lin, Z. P. (2003). LMI approach to state-feedback stabilization of multidimensional systems. International Journal of Control, 76(14), 1428–1436.

    Article  MATH  MathSciNet  Google Scholar 

  • Hinamoto, T. (1993). 2-D Lyapunov equation and filter design based on the Fornasini–Marchesinni second model. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 40(2), 102–110.

    Article  MATH  Google Scholar 

  • Huang, L., & Duan, Z. S. (2003). Complexity in control science. Acta Automatica Sinica, 29(5), 748–754.

    MathSciNet  Google Scholar 

  • Lin, Z. P., & Bruton, L. T. (1989). BIBO stability of inverse 2-D digital filters in the presence of nonessential singularities of the second kind. IEEE Transactions Circuits and Systems, 36(2), 244–254.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, X. J., & Zou, Y. (2010). A consensus problem for a class of vehicles with 2-D dynamics. Multidimensional Systems and Signal Processing, 21(4), 373–389.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, X. J., & Zou, Y. (2012). Stability analysis for a special class of dynamical networks. International Journal of Systems Science, 43(10), 1950–1957.

    Article  MathSciNet  Google Scholar 

  • Ooba, T. (2000). On stability analysis of 2-D systems based on 2-D Lyapunov matrix inequalities. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 47(8), 1263–1265.

    Article  MathSciNet  Google Scholar 

  • Ooba, T. (2001). Stabilization of multidimensional systems using local state estimators. Multidimensional Systems and Signal Processing, 12(1), 49–61.

    Article  MATH  MathSciNet  Google Scholar 

  • Packard, A., & Doyle, J. C. (1993). The complex structured singular value. Automatica, 29(1), 71–109.

    Article  MATH  MathSciNet  Google Scholar 

  • Schaub, H., Vadali, S. R., & Junkins, J. L. (2000). Spacecraft formation flying control using mean orbital elements. Journal of the Astronautical Sciences, 48(1), 69–87.

    Google Scholar 

  • Sharma, R. K., & Ghose, D. (2009). Collision avoidance 505 between UAV clusters using swarm intelligence techniques. International Journal of Systems Science, 40(5), 521–538.

    Article  MATH  MathSciNet  Google Scholar 

  • Steven, H. S. (2001). Exploring complex networks. Nature, 410(6825), 268–276.

    Article  Google Scholar 

  • Wang, X. F. (2002). Complex networks: Topology, dynamics, and synchronization. International Journal of Bifurcation and Chaos, 12(5), 885–916.

    Article  MATH  MathSciNet  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  • Yamaguchi, H., Arai, T., & Beni, G. (2001). A distributed control scheme for multiple robotic vehicles to make group formations. Robotics and Autonomous Systems, 36(4), 125–147.

    Article  Google Scholar 

  • Yao, J., Wang, W. Q., & Zou, Y. (2013). The delay-range-dependent robust stability analysis for 2-D state-delayed systems with uncertainty. Multidimensional Systems and Signal Processing, 24(1), 87–103.

    Article  MATH  MathSciNet  Google Scholar 

  • Zou, Y. (2010). Investigation on mechanism and extension of feedback: An extended closed-loop coordinate control of interconnection-regulation and feedback. Journal of Nanjing University of Science and Technology, 34(1), 1–7.

    Google Scholar 

Download references

Acknowledgments

This paper is sponsored by National Natural Science Foundation of P. R. China under Grant 61174038, 11102072, and the Fundamental Research Funds for the Central Universities JUSRP21104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Zou, Y. Stability analysis for a class of complex dynamical networks with 2-D dynamics. Multidim Syst Sign Process 25, 531–540 (2014). https://doi.org/10.1007/s11045-012-0216-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-012-0216-1

Keywords