Skip to main content
Log in

Two-dimensional DOA estimation for acoustic vector-sensor array using a successive MUSIC

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper discusses the problem of two-dimensional (2D) direction of arrival (DOA) estimation for acoustic vector-sensor array, and derives a successive multiple signal classification (MUSIC) algorithm therein. The proposed algorithm obtains initial estimations of the azimuth and elevation angles obtained from the signal subspace, and uses successively one-dimensional local searches to achieve the joint estimation of 2D-DOA. The proposed algorithm, which requires the one-dimension local searches, can avoid the high computational cost within 2D-MUSIC algorithm. The proposed algorithm can obtain automatically-paired 2D-DOA estimation for acoustic vector-sensor array, and it has better DOA estimation performance than propagator method, estimation of signal parameters via rotational invariance technique algorithm and trilinear decomposition algorithm. Meanwhile, it has very close angle estimation to 2D-MUSIC algorithm. Furthermore, it is suitable for non-uniform linear arrays, works well for the sources with the same azimuth angle, and imposes less constraint on the sensor spacing, which does not have to be restricted within half-wavelength. We have also derived the mean-square error of DOA estimation of the proposed algorithm and the Cramer-Rao bound of DOA estimation. Simulation results verify the usefulness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdi, A., & Guo, H. (2009). Signal correlation modeling in acoustic vector sensor arrays. IEEE Transaction on Signal Processing, 57(3), 892–903.

    Article  MathSciNet  Google Scholar 

  • Arunkumar, K. P., & Anand, G. V. (2007). Multiple source localization in shallow ocean using a uniform linear horizontal array of acoustic vector sensors. In 2007 IEEE intelligent information communication technologies for better human life (TENCON 2007) (pp. 1–4). Taibei, China.

  • Bihan, N. L., Miron, S., & Mars, J. I. (2007). MUSIC algorithm for vector-sensors array using biquaternions. IEEE Transaction on Signal Processing, 55(9), 4523–4533.

    Article  Google Scholar 

  • Chen, H., & Zhao, J. (2004). Wideband MVDR beamforming for acoustic vector sensor linear array. IEE Proceedings Radar, Sonar & Navigation, 151(3), 158–162.

    Article  Google Scholar 

  • Gong, X., Liu, Z., & Xu, Y. (2008). Quad-quaternion MUSIC for DOA estimation using electromagnetic vector sensors. EURASIP Journal on Advances in Signal Processing, 2008, 14 pp. doi:10.1155/2008/213293. (Article ID 213293).

  • Hawkes, M., & Nehorai, A. (1998). Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Transaction on Signal Processing, 46(9), 2291–2304.

    Article  Google Scholar 

  • Hawkes, M., & Nehorai, A. (2001). Acoustic vector-sensor correlations in ambient noise. IEEE Journal of Oceanic Engineering, 26(3), 337–347.

    Article  Google Scholar 

  • Hawkes, M., & Nehorai, A. (2003). Wideband source localization using a distributed acoustic vector-sensor array. IEEE Transaction on Signal Processing, 51(6), 1479–1491.

    Article  MathSciNet  Google Scholar 

  • He, J., & Liu, Z. (2008). Two-dimensional direction finding of acoustic sources by a vector sensor array using the propagator method. Signal Processing, 88(10), 2492–2499.

    Article  MATH  Google Scholar 

  • He, J., Jiang, S., Wang, J., & Liu, Z. (2009). Direction finding in spatially correlated noise fields with arbitrarily-spaced and far-separated subarrays at unknown locations. IET Radar, Sonar & Navigation, 3(3), 278–284.

    Article  Google Scholar 

  • He, J., Swamy, M. N., & Ahmad, M. O. (2011). Joint DOD and DOA estimation for MIMO array with velocity receive sensors. IEEE Signal Processing Letters, 18(7), 399–402.

    Article  Google Scholar 

  • Hochwald, B., & Nehorai, A. (1996). Identifiability in array processing models with vector-sensor applications. IEEE Transaction on Signal Processing, 44(1), 83–95.

    Article  MathSciNet  Google Scholar 

  • Liu, Z., Ruan, X., & He, J. (2013). Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array. Multidimensional Systems and Signal Processing, 24(1), 105–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Miron, S., Bihan, N. L., & Mars, J. I. (2006). Quaternion-MUSIC for vector-sensor array processing. IEEE Transaction on Signal Processing, 54(4), 1218–1229.

    Article  Google Scholar 

  • Nehorai, A., & Paldi, E. (1994). Acoustic vector-sensor array processing. IEEE Transaction on Signal Processing, 42(9), 2481–2491.

    Article  Google Scholar 

  • Palanisamy, P., Kalyanasundaram, N., & Swetha, P. M. (2012). Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array. Signal Processing, 92(1), 19–28.

    Article  Google Scholar 

  • Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Transaction Acoustic Speech Signal Processing, 37(5), 720–741.

    Article  MATH  MathSciNet  Google Scholar 

  • Stoica, P., & Nehorai, A. (1990). Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transaction on Signal Processing, 38(10), 1783–1795.

    MATH  Google Scholar 

  • Sun, G., Li, Q., & Zhang, B. (2006). Acoustic vector sensor signal processing. Chinese Journal of Acoustics, 25(1), 1–15.

    MathSciNet  Google Scholar 

  • Sun, G., Yang, D., & Zhang, L. (2003). Maximum likelihood ratio detection and maximum likelihood DOA estimation based on the vector hydrophone. Acta Acustica, 28(1), 66–72.

    Google Scholar 

  • Tam, P. K., & Wong, K. T. (2009). Cramer-Rao Bounds for direction finding by an acoustic vector sensor under nonideal gain-phase responses. IEEE Sensors Journal, 9(8), 969–982.

    Article  Google Scholar 

  • Wang, Y., Zhang, J., & Hu, B. (2008). Hypercomplex model of acoustic vector sensor array with its application for the high resolution two dimensional direction of arrival estimation. In Proceedings of IEEE instrumentation & measurement technology conference (IMTC’ 2008) (pp. 1–5). Victoria, BC, May 2008.

  • Wong, K. T., & Zoltowski, M. D. (1997a). Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at unknown locations. IEEE Journal of Oceanic Engineering, 22(3), 566–575.

    Article  Google Scholar 

  • Wong, K. T., & Zoltowski, M. D. (1997b). Extended-aperture underwater acoustic multisource azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE Journal of Oceanic Engineering, 22(4), 659–672.

    Article  Google Scholar 

  • Wong, K. T., & Zoltowski, M. D. (1999). Root-MUSIC-based azimuth-elevation angle-of-arrival Estimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEE Transaction on Signal Processing, 47(12), 3250–3260.

    Article  Google Scholar 

  • Wong, K. T., & Zoltowski, M. D. (2000). Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace. IEEE Journal of Oceanic Engineering, 25(2), 262–273.

    Article  Google Scholar 

  • Yamada, I., & Oguchi, K. (2011). High-resolution estimation of the directions-of-arrival distribution by algebraic phase unwrapping algorithms. Multidimensional Systems and Signal Processing, 22(1–3), 191–211.

    Article  MATH  MathSciNet  Google Scholar 

  • Yuan, Y., Zhang, B., & Fan, D., et al. (2008). DFT and PSD for estimating DOA with an active acoustic array. In IEEE international conference on automation & logistics (ICAL’ 2008), Sept 2008 (pp. 694–699).

  • Zhang, X., Lian, J., & Xu, D. (2012a). Trilinear decomposition-based two dimensional DOA estimation algorithm for arbitrarily spaced acoustic vector-sensor array subjected to unknown locations. Wireless Personal Communication, 67, 859–877.

    Article  Google Scholar 

  • Zhang, X., Chen, C., & Li, J., et al. (2012b) Blind DOA and polarization estimation for polarization-sensitive array using dimension reduction MUSIC. Multidimensional Systems and Signal Processing. doi:10.1007/s11045-012-0186-3. (Online).

Download references

Acknowledgments

This work is supported by China NSF Grants (60801052, 61271327, 61071164), Jiangsu Planned Projects for Postdoctoral Research Funds (1201039C), China Postdoctoral Science Foundation (2012M521099), Open project of key laboratory of underwater acoustic communication and marine information technology (Xiamen University), Hubei Key Laboratory of Intelligent Wire1ess Communications (IWC2012002), Open project of Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Open project of Key Laboratory of modern acoustic of Ministry of Education (Nanjing University), the Aeronautical Science Foundation of China(20120152001), and the Fundamental Research Funds for the Central Universities (NZ2012010, kfjj120115, kfjj20110215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Xiaofei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiaofei, Z., Ming, Z., Han, C. et al. Two-dimensional DOA estimation for acoustic vector-sensor array using a successive MUSIC. Multidim Syst Sign Process 25, 583–600 (2014). https://doi.org/10.1007/s11045-012-0219-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-012-0219-y

Keywords

Navigation