Abstract
Multidimensional wave digital filters (MDWDF) exhibit the same desirable properties as 1D WDFs, most notably including passivity and therefore guaranteed stability as well as high robustness. A possible application for such MDWDFs may be found in motion analysis of image sequences by means of filters with fan-shaped transfer functions, where content with specific movement information can be extracted. For that matter, a parallel filter bank is needed to differentiate object motion into separate classes. In this paper, a new specialized MDWDF fan filter structure is introduced, possessing both reduced computational complexity and memory requirements compared to existing approaches. Additionally, part of the processing can be shared among all bands, further increasing efficiency.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bertozzi, M., Broggi, A., Fascioli, A., & Fascioli, R. (1998). Stereo inverse perspective mapping: Theory and applications. Image and Vision Computing Journal, 8, 585–590.
Bilbao, S. (2004). Wave and Scattering Methods for Numerical Simulation. Chichester: Wiley.
Bolle, M. (1992). Entwurfsverfahren für mehrdimensionale diskrete Fächerfilter, Ph.D. thesis, Ruhr-Universität Bochum.
Bolle, M. (1994). A closed form design method for recursive 3-d cone filters. IEEE International Conference on Acoustics, Speech, and, Signal Processing, VI, 141–144.
Bruton, L., & Bartley, N. (1986). The enhancement and tracking of moving objects in digital images using adaptive three-dimensional recursive filters. IEEE Transactions on Circuits and Systems, 33(6), 604–612.
Fettweis, A., (1986). Wave digital filters: Theory and practice. IEEE Transaction, pp. 270327.
Gavriilidis, A., Schwerdtfeger, T., Velten, J., Schauland, S., Höhmann, L., Haselhoff, A., Boschen, F., Kummert, A. (2011) Multisensor data fusion for advanced driver assistance systems—the Active Safety Car project. Multidimensional (nD) Systems (nDs), 2011 7th International Workshop on, 2011.
Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203.
Linnenberg, G. (1984). Über die diskrete Verarbeitung mehrdimensionaler Signale unter Verwendung von Wellendigitalfiltern, Ph.D. thesis, Ruhr-Universität Bochum.
Li, H., Kummert, A., Schauland, S., Velten, J. (2009). “3D wave digital filter implementation on a virtex2 FPGA board with external SDRAM. In International Workshop on Multidimensional (nD) Systems, 2009. nDS 2009, pp. 1–5, June 29–July 1 2009.
Lu, Y. M., & Do, M. N. (2007). Multidimensional directional filter banks and surfacelets. IEEE Transactions on Image Processing, 16(4), 918–931.
Mallot, H. A., Bülthoff, H. H., Little, J. J., & Bohrer, S. (1991). Inverse Perspective Mapping Simplifies Optical Flow Computation and Obstacle Detection. Berlin: Springer.
Runze, G. (2005). Entwurf dreidimensionaler digitaler Geschwindigkeitsfilter zur Separation unterschiedlicher Geschwindigkeitskomponenten eines Signals. Ph.D. thesis, Universität Erlangen-Nürnberg.
Schauland, S., Velten, J., & Kummert, A. (2008). Motion-based object detection using 3D wave digital filters. Computer and Information Technology, 2008, 857–861.
Schauland, S., Velten, J., Kummert, A. (2009). Realization of a recursive 3-D cone filter for video processing applications. In 52nd IEEE International Midwest Symposium on Circuits and Systems, 2009. MWSCAS ’09, pp. 632–635, 2–5 Aug. 2009.
Schauland, S., Velten, J., Kummert, A. (2010). A new anti-aliasing approach for improved motion-based object detection using linear filters. Intelligent Vehicles Symposium (IV), pp. 915–920.
Schwerdtfeger, T., Schauland, S., Velten, J., Kummert, A. (2011). On multidimensional velocity filter banks for video-based motion analysis of world-coordinate objects. In 2011 7th International Workshop on Multidimensional (nD) Systems (nDs).
Searle, S. J. (2007). On the robustness of efficient velocity filter banks to registration error. In 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007, pp. 245–250, 3–6 Dec 2007.
Velten, J., Schauland, S., & Kummert, A. (2008). Multidimensional velocity filters for visual scene analysis in automotive driver assistance systems. Multidimensional Systems and Signal Processing, 19(3–4), 401–410.
Viola, P., Jones, M. (2001). “Rapid object detection using a boosted cascade of simple features. In Accepted Conference on Computer Vision and Pattern Recognition, 1 I-511–I-518.
Welch, G., & Bishop, G. (2001). An Introduction to the Kalman Filter. Technical report: University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Zhao, Y., & Swamy, M. N. S. (2013). The analysis and design of two-dimensional nearly-orthogonal symmetric wavelet filter banks. Multidimensional Systems and Signal Processing, 24(1), 199–218.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schwerdtfeger, T., Velten, J. & Kummert, A. A multidimensional wave digital filter bank for video-based motion analysis. Multidim Syst Sign Process 25, 295–311 (2014). https://doi.org/10.1007/s11045-012-0221-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-012-0221-4