Skip to main content

Advertisement

Log in

Robust iterative learning control with rectifying action for nonlinear discrete time-delayed systems

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper addresses the two-dimensional (2-D) linear inequalities based robust Iterative Learning Control (ILC) for nonlinear discrete systems with time delays. The proposed two-gain ILC rule has a rectifying action to iterative initial error and external disturbances. It guarantees a reduced bound of the ILC tracking error against the iteration-varying initial error and disturbances. For the iteration-invariant initial error and disturbances, the ILC tracking error can be driven to convergence, and a complete tracking to reference trajectory beyond the initial time point is even achieved as the control gain is specifically selected. An example is used to validate the proposed ILC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abidi, K., & Xu, J.-X. (2011). Iterative learning control for sampled-data systems: From theory to practice. IEEE Transactions on Industrial Electronics, 58(7), 3002–3015.

    Article  Google Scholar 

  • Ahn, H.-S., Chen, Y. Q., & Moore, K. L. (2007). Iterative learning control: Brief survey and categorization. IEEE Transactions on Systems, Man, and Cybernetics Part C, 37(6), 1099–1121.

    Article  Google Scholar 

  • Bristow, D. A., Tharayil, M., & Alleyne, A. G. (2006). A survey of iterative learning control. IEEE Control Systems Magazine, 26(3), 96–114.

    Article  Google Scholar 

  • Chen, Y., Gong, Z., & Wen, C. (1998). Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays. Automatica, 34(3), 345–353.

    Article  MATH  MathSciNet  Google Scholar 

  • Cichy, B., Galkowski, K., & Rogers, E. (2012a). Iterative learning control for spatio-temporal dynamics using Crank-Nicholson discretization. Multidimensional Systems and Signal Processing, 23(1–2), 185–208.

    Article  MATH  MathSciNet  Google Scholar 

  • Cichy, B., Galkowski, K., Rogers, E., & Kummert, A. (2012b). Control law design for discrete linear repetitive processes with non-local updating structures. Multidimensional Systems Signal Processing. doi:10.1007/s11045-012-0199-y.

  • Fang, Y., & Chow, T. W. S. (2003). 2-D analysis for iterative learning controller for discrete-time systems with variable initial conditions. IEEE Transactions on Circuit and Systems Part I: Fundamental Theory and Applications, 50(5), 722–727.

    Article  Google Scholar 

  • Geng, Z., Carroll, R., & Xies, J. (1990). Two-dimensional model and algorithm analysis for a class of iterative learning control system. International Journal of Control, 52, 833–862.

    Article  Google Scholar 

  • Kurek, J. E., & Zaremba, M. B. (1993). Iterative learning control synthesis based on 2-D system theory. IEEE Transactions on Automatic Control, 38, 121–125.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, X.-D., Chow, T. W. S., & Ho, J. K. L. (2005a). 2-D system theory based iterative learning control for linear continuous systems with time-delays. IEEE Transactions on Circuit and Systems-I: Regular Paper, 52(7), 1421–1430.

    Article  MathSciNet  Google Scholar 

  • Li, X.-D., Ho, J. K. L., & Chow, T. W. S. (2005b). Iterative learning control for linear time-variant discrete systems based on 2-D system theory. IEE Proceedings of Control Theory and Applications, 152(1), 13–18.

    Article  Google Scholar 

  • Li, X.-D., Chow, T. W. S., & Ho, J. K. L. (2008). Iterative learning control for a class of nonlinear discrete-time systems with multiple input delays. International Journal of System Science, 39(4), 361–369.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, X.-D., Chow, T. W. S., Ho, J. K. L., & Zhang, J. (2009). Iterative learning control with initial rectifying action for nonlinear continuous systems. IET Control Theory and Applications, 3(1), 49–55.

    Article  MathSciNet  Google Scholar 

  • Meng, D., Jia, Y., Du, J., & Yu, F. (2009a). Robust design of a class of time-delay iterative learning control systems with initial shifts. IEEE Transactions on Circuits and Systems-I: Regular Paper, 56(8), 1744–1757.

    Article  MathSciNet  Google Scholar 

  • Meng, D., Jia, Y., Du, J., & Yuan, S. (2009b). Robust discrete-time iterative learning control for nonlinear system with varying initial state shifts. IEEE Transactions on Automatic Control, 54(11), 2626–2631.

    Article  MathSciNet  Google Scholar 

  • Owens, D. H., Amann, N., Rogers, E., & French, M. (2000). Analysis of linear iterative learning control schemes—A 2D systems/repetitive processes approach. Multidimensional Systems and Signal Processing, 11(1–2), 125–177.

    Article  MATH  MathSciNet  Google Scholar 

  • Park, K.-H. (2005). An average operator-based PD-type iterative learning control for variable initial state error. IEEE Transactions on Automatic Control, 50(6), 865–869.

    Article  Google Scholar 

  • Park, K.-H., Bien, Z., & Hwang, D.-H. (1998). Design of an iterative learning controller for a class of linear dynamic systems with time delay. IEE Proceedings of Control Theory and Applications, 145(6), 507–512.

    Article  Google Scholar 

  • Rabenstein, R., & Steffen, P. (2012). Numerical iterative methods and repetitive processes. Multidimensional Systems and Signal Processing, 23(1–2), 163–183.

    Article  MATH  MathSciNet  Google Scholar 

  • Shen, D., Mu, Y., & Xiong, G. (2011). Iterative learning control for non-linear systems with deadzone input and time delay in presence of measurement noise. IET Control Theory and Applications, 5(12), 1418–1425.

    Article  MathSciNet  Google Scholar 

  • Sun, M., & Wang, D. (2001). Initial condition issues on iterative learning control for non-linear systems with time delay. International Journal of Systems Science, 32(11), 1365–1375.

    Article  MATH  MathSciNet  Google Scholar 

  • Sun, M., & Wang, D. (2002). Iterative learning control with initial rectifying action. Automatica, 38(7), 1177–1182.

    Article  MATH  Google Scholar 

  • Wang, D. (1998). Convergence and robustness of discrete time nonlinear systems with iterative learning control. Automatica, 34(11), 1445–1448.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, Y.-C., Chien, C.-J., & Teng, C.-C. (2004). Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network. IEEE Transactions on Systems, Man, and Cybernetics Part B, 34(3), 1348–1359.

    Article  Google Scholar 

  • Xu, J.-X., Hu, Q. P., Lee, T. H., & Yamamoto, S. (2001). Iterative learning control with Smith time delay compensator for batch processes. Journal of Process Control, 11(3), 321–328.

    Article  Google Scholar 

  • Xu, J.-X., & Yan, R. (2005). On initial conditions in iterative learning control. IEEE Transactions on Automatic Control, 50(9), 1349–1354.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China under Grants 60874115, U1135005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Li.

Appendix

Appendix

1.1 Proof of Lemma 1

As \(t=t_0^*\), (5b) is written as

$$\begin{aligned} Y_{k+1} (t_0^*)\le A3_k (t_0^*)\cdot X_k (t_0^*)+A4_k (t_0^*)\cdot Y_k (t_0^*)+\beta _k (t_0^*). \end{aligned}$$
(31)

From the definitions on matrix relation “\(\le \)” and matrix norm in Sect. 2, the fact is easily known that if \(A,\;B\) are nonnegative matrices with \(A\le B\), then, \(\left\Vert A \right\Vert\le \left\Vert B \right\Vert\). Therefore, we have

$$\begin{aligned} \left\Vert {Y_{k+1} \left( {t_0^*} \right)} \right\Vert&\le \left\Vert {A3_k \left( {t_0^*} \right)\cdot X_k \left( {t_0^*} \right)+A4_k \left( {t_0^*} \right)\cdot Y_k \left( {t_0^*} \right)+\beta _k \left( {t_0^*} \right)} \right\Vert \nonumber \\&\le \left\Vert {A3_k \left( {t_0^*} \right)\cdot X_k \left( {t_0^*} \right)+\beta _k \left( {t_0^*} \right)} \right\Vert+\left\Vert {A4_k \left( {t_0^*} \right)} \right\Vert\cdot \left\Vert {Y_k \left( {t_0^*} \right)} \right\Vert \end{aligned}$$
(32)

From the assumptions, \(A3_k (t_0^*), \,X_k \left( {t_0^*} \right), \,\beta _k \left( {t_0^*} \right)\) and \(Y_0 (t_0^*)\) are finite, and \(\left\Vert {A4_k (t_0^*)} \right\Vert\le \rho <1\). Let \(d_k (t_0^*)=\left\Vert {A3_k (t_0^*)\cdot X_k (t_0^*)+\beta _k (t_0^*)} \right\Vert\), which is finite. It follows from (32) that

$$\begin{aligned} \left\Vert {Y_{k+1} (t_0^*)} \right\Vert\le \rho \left\Vert {Y_k (t_0^*)} \right\Vert+d_k (t_0^*) \end{aligned}$$
(33)

According to the Lemma in Appendix of Wang (1998), the following inequality for \(k\ge 1\) is derived from the difference inequality (33)

$$\begin{aligned} \left\Vert {Y_k (t_0^*)} \right\Vert&\le \sum _{j=0}^{k-1} {\rho ^{k-1-j}\cdot d_j (t_0^*)} +\rho ^{k}\cdot \left\Vert {Y_0 (t_0^*)} \right\Vert \nonumber \\&\le d(t_0^*)\cdot \sum _{i=0}^{k-1} {\rho ^{i}} +\rho ^{k}\cdot \left\Vert {Y_0 (t_0^*)} \right\Vert, (\text{ Let}\, i=k-1-j) \end{aligned}$$
(34)

where \(d(t_0^*)=\mathop {\sup }\nolimits _k d_k (t_0^*)\). Consequently, \(\mathop {\limsup }\nolimits _{k\rightarrow +\infty } \left\Vert {Y_k (t_0^*)} \right\Vert\le \frac{d(t_0^*)}{1-\rho }\). That is, \(\mathop {\sup }\nolimits _k \left( {{\begin{array}{c} {\left\Vert {X_k (t_0^*)} \right\Vert} \\ {\left\Vert {Y_k (t_0^*)} \right\Vert} \\ \end{array} }} \right)\) is finite.

Assume that for \(t=l \quad (t_0^*\le l<t_0^*+n^{*}), \,\mathop {\sup }\nolimits _k \left( {{\begin{array}{c} {\left\Vert {X_k (l)} \right\Vert} \\ {\left\Vert {Y_k (l)} \right\Vert} \\ \end{array} }} \right)\) is finite. As a direct result of (5a), \(\mathop {\sup }\nolimits _k \left\Vert {X_k \left( {l+1} \right)} \right\Vert\) is finite because of the boundedness of \(A1_k (l), \,A2_k (l)\) and \(\alpha _k (l)\). On the other hand, as \(t=l+1\), (5b) is written as

$$\begin{aligned} Y_{k+1} (l+1)\le A3_k (l+1)\cdot X_k (l+1)+A4_k (l+1)\cdot Y_k (l+1)+\beta _k (l+1) \end{aligned}$$
(35)

Because of the nonnegative property of matrices/vectors in (35), it follows that

$$\begin{aligned} \left\Vert {Y_{k+1} \left( {l+1} \right)} \right\Vert&\le \left\Vert {A3_k \left( {l+1} \right)\cdot X_k \left( {l+1} \right)+A4_k \left( {l+1} \right)\cdot Y_k \left( {l+1} \right)+\beta _k \left( {l+1} \right)} \right\Vert \nonumber \\&\le \left\Vert {A3_k \left( {l+1} \right)\cdot X_k \left( {l+1} \right)+\beta _k \left( {l+1} \right)} \right\Vert+\left\Vert {A4_k \left( {l+1} \right)} \right\Vert\cdot \left\Vert {Y_k \left( {l+1} \right)} \right\Vert\nonumber \\ \end{aligned}$$
(36)

In (36), \(A3_k (l+1), \,X_k (l+1), \,\beta _k (l+1)\) and \(Y_0 (l+1)\) are finite, and \(\left\Vert {A4_k \left( {l+1} \right)} \right\Vert\le \rho <1\). Let \(d_k (l+1)=\left\Vert {A3_k (l+1)\cdot X_k (l+1)+\beta _k (l+1)} \right\Vert\), which is finite.

It follows from (36) that

$$\begin{aligned} \left\Vert {Y_{k+1} (l+1)} \right\Vert\le \rho \left\Vert {Y_k (l+1)} \right\Vert+d_k (l+1) \end{aligned}$$
(37)

Similar to the process of (33) to (34), for \(k\ge 1\), we have

$$\begin{aligned} \left\Vert {Y_k (l+1)} \right\Vert\le d(l+1)\sum _{i=0}^{k-1} {\rho ^{i}} +\rho ^{k}\cdot \left\Vert {Y_0 (l+1)} \right\Vert, \end{aligned}$$

where \(d(l+1)=\mathop {\sup }\nolimits _k d_k (l+1)\). Therefore, \(\mathop {\limsup }\nolimits _{k\rightarrow +\infty } \left\Vert {Y_k (l+1)} \right\Vert\le \frac{d\left( {l+1} \right)}{1-\rho }\). That is, \(\mathop {\sup }\nolimits _k \left( {{\begin{array}{c} {\left\Vert {X_k (l+1)} \right\Vert} \\ {\left\Vert {Y_k (l+1)} \right\Vert} \\ \end{array} }} \right)\) is finite. Based on the mathematical induction, we have \(\mathop {\sup }\nolimits _k \left( {{\begin{array}{c} {\left\Vert {X_k (t)} \right\Vert} \\ {\left\Vert {Y_k (t)} \right\Vert} \\ \end{array} }} \right)\) is finite for \(t=t_0^*, t_0^*+1, \ldots , t_0^*+n^{*}\).

Furthermore, if \(\mathop {\lim }\nolimits _{k\rightarrow +\infty } \alpha _k (t)=\mathop {\lim }\nolimits _{k\rightarrow +\infty } \beta _k (t)=0\) for \(t=t_0^*, t_0^*+1, \ldots , t_0^*+n^{*}\), and \(\mathop {\lim }\nolimits _{k\rightarrow +\infty } X_k (t_0^*)=0, \,\mathop {\sup }\nolimits _k \left\Vert {Y_k (t)} \right\Vert\) is still finite for \(t=t_0^*, t_0^*+1, \ldots , t_0^*+n^{*}\). Similar to the above steps, we apply the mathematical induction to the 2-D linear inequalities (5a) and (5b). In the inductive steps, taking supremum limit to (33) and (37), and considering that \(\mathop {\lim }\nolimits _{k\rightarrow +\infty } d_k (t_0^*)=0\) and \(\mathop {\lim }\nolimits _{k\rightarrow +\infty } d_k (l+1)=0\), it is easy to prove that \(\mathop {\lim }\nolimits _{k\rightarrow +\infty } \left( {{\begin{array}{c} {\left\Vert {X_k (t)} \right\Vert} \\ {\left\Vert {Y_k (t)} \right\Vert} \\ \end{array} }} \right)=0\) for \(t=t_0^*, t_0^*+1, \ldots , t_0^*+n^{*}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XD., Ho, J.K.L. & Liu, M. Robust iterative learning control with rectifying action for nonlinear discrete time-delayed systems. Multidim Syst Sign Process 25, 723–739 (2014). https://doi.org/10.1007/s11045-013-0227-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0227-6

Keywords