Skip to main content
Log in

A new DOA estimation approach using Volterra signal model

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we proposed a new direction-of-arrival estimation approach using Volterra signal model in spatial domain. The new technique basically uses additionally the second-order terms of Volterra series to produce augmented Volterra snapshots, the extension for higher-order case is straightforward. The resolution of the proposed method is high comparing with the standard multiple signal classification (MUSIC) algorithm and the 2q-MUSIC algorithm. Simulation results are presented to show the performance of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Birot, G., Albera, L., & Chevalier, P. (2010). Sequential high-resolution direction finding from higher order statistics. IEEE Transactions on Signal Processing, 58(8), 4144–4155.

    Article  MathSciNet  Google Scholar 

  • Chevalier, P., & Ferreol, A. (1999). On the virtual array concept for the fourth-order direction finding problem. IEEE Transactions on Signal Processing, 47(9), 2592–2595.

    Article  MATH  Google Scholar 

  • Chevalier, P., Albera, L., Ferreol, A., & Comon, P. (2005). On the virtual array concept for higher order array processing. IEEE Transactions on Signal Processing, 53(4), 1254–1271.

    Article  MathSciNet  Google Scholar 

  • Chevalier, P., Ferreol, A., & Albera, L. (2006). High-resolution direction finding from higher order statistics: The 2q -MUSIC algorithm. IEEE Transactions on Signal Processing, 54(8), 2986–2997.

    Article  Google Scholar 

  • Chevalier, P., Ferreol, A., Albera, L., & Birot, G. (2007). Higher order direction finding from arrays with diversely polarized antennas: The pd-2q-music algorithms. IEEE Transactions on Signal Processing, 55(11), 5337–5350.

    Article  MathSciNet  Google Scholar 

  • Diniz, P. S. R. (2008). Adaptive filtering : Algorithms and practical implementation. Berlin: Springer.

    Book  Google Scholar 

  • Dogan, M. C., & Mendel, J. M. (1995a). Applications of cumulants to array processing. I. Aperture extension and array calibration. IEEE Transactions on Signal Processing, 43(5), 1200–1216.

    Article  Google Scholar 

  • Dogan, M. C., & Mendel, J. M. (1995b). Applications of cumulants to array processing. II. Non-gaussian noise suppression. IEEE Transactions on Signal Processing, 43(7), 1663–1676.

    Article  Google Scholar 

  • Gonen, E., Mendel, J. M., & Dogan, M. C. (1997). Applications of cumulants to array processing. IV. Direction finding in coherent signals case. IEEE Transactions on Signal Processing, 45(9), 2265–2276.

    Article  Google Scholar 

  • Kaveh, M., & Barabell, A. (1986). The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(2), 331–341.

    Article  Google Scholar 

  • Lee, H. B., & Wengrovitz, M. S. (1990). Resolution threshold of beamspace MUSIC for two closely spaced emitters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(9), 1545–1559.

    Article  MATH  Google Scholar 

  • Liu, Z., Ruan, X., & He, J. (2013). Efficient 2-d doa estimation for coherent sources with a sparse acoustic vector-sensor array. Multidimensional Systems and Signal Processing, 24(1), 105–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Mathews, V. J. (1991). Adaptive polynomial filters. IEEE Signal Processing Magazine, 8(3), 10–26.

    Article  Google Scholar 

  • Pal, P., & Vaidyanathan, P. P. (2012). Multiple level nested array: An efficient geometry for th order cumulant based array processing. IEEE Transactions on Signal Processing, 60(3), 1253–1269.

    Article  MathSciNet  Google Scholar 

  • Porat, B., & Friedlander, B. (1991). Direction finding algorithms based on high-order statistics. IEEE Transactions on Signal Processing, 39(9), 2016–2024.

    Article  MATH  Google Scholar 

  • Rao, B. D., & Hari, K. V. S. (1989). Performance analysis of root-MUSIC. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(12), 1939–1949.

    Article  Google Scholar 

  • Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  Google Scholar 

  • Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood, and Cramer–Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(5), 720–741.

    Article  MATH  MathSciNet  Google Scholar 

  • Stoica, P., & Nehorai, A. (1990). MUSIC, maximum likelihood, and Cramer–Rao bound: further results and comparisons. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(12), 2140–2150.

    Article  Google Scholar 

  • Van Trees, H. L. (2002). Detection, estimation, and modulation theory, part IV, optimum array processing. London: Wiley.

    Google Scholar 

  • Xu, X. L., & Buckley, K. M. (1992). Bias analysis of the MUSIC location estimator. IEEE Transactions on Signal Processing, 40(10), 2559–2569.

    Article  MATH  Google Scholar 

  • Zhang, X., Chen, C., Li, J., & Xu, D. (2012). Blind DOA and polarization estimation for polarization-sensitive array using dimension reduction MUSIC. Multidimensional Systems and Signal Processing, 1–16. doi:10.1007/s11045-012-0186-3.

  • Zhang, Q. T. (1995). Probability of resolution of the MUSIC algorithm. IEEE Transactions on Signal Processing, 43(4), 978–987.

    Article  Google Scholar 

  • Zheng, Z., & Li, G. (2012). Fast DOA estimation of incoherently distributed sources by novel propagator. Multidimensional Systems and Signal Processing, 1–9. doi:10.1007/s11045-012-0185-4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuxi Wen.

Appendix: The dimension of the signal subspace \(N_s\)

Appendix: The dimension of the signal subspace \(N_s\)

The dimension of the signal subspace \(N_s\) is equivalent to the Rank of \(\mathbf{R}_v\) for the noiseless case. In order to analysis the Rank of \(\mathbf{R}_v\), let us look at some of the properties of Rank:

  1. (1)

    For a matrix \(\mathbf{{B}}\in \mathbb{C }^{m\times n}\), \(\mathrm{Rank}(\mathbf{{B}})\le \min \left(m,n\right).\)

  2. (2)

    For two matrices \(\mathbf{{B}}\in \mathbb{C }^{m\times n}\) and \(\mathbf{{C}}\in \mathbb{C }^{n\times t}\), \(\mathrm{Rank}(\mathbf{{BC}})\le \min \big (\mathrm{Rank}(\mathbf{{B}}),\mathrm{Rank}(\mathbf{{C}})\big ).\)

  3. (3)

    For two matrics \(\mathbf{{B}}\in \mathbb{C }^{m\times n}\) and \(\mathbf{{D}}\in \mathbb{C }^{t\times n}\), \(\mathrm{Rank}\left(\left[\begin{array}{c} \mathbf{{B}}\\ \mathbf{{D}}\end{array}\right]\right)\le \min \left(m+t,n\right).\)

For the noiseless case, the Volterra snapshots \(\mathbf{{X}}_{v}\) is given by

$$\begin{aligned} \mathbf{{X}}_{v}=\left[ \begin{array}{c} \mathbf{{A}}(\theta )\mathbf{{S}}\\ \left(\mathbf{{A}}(\theta )\otimes \mathbf{{A}}^*(\theta )\right)\cdot \left(\mathbf{{S}\odot {S}^*}\right) \end{array} \right], \end{aligned}$$
(33)

where \(\mathbf{S} = \left[\mathbf{s}(1),\, \mathbf{s}(2), \ldots , \mathbf{s}(k), \ldots , \mathbf{s}(K)\right]\) and \(\odot \) denotes Khatri-Rao product, which is a column-wise Kronecker product.

The estimated noiseless covariance matrix is obtained by

$$\begin{aligned} \mathbf{R}_{v}=\frac{1}{K}\Big (\mathbf{{X}}_{v}\mathbf{{X}}_{v}^{H}\Big ). \end{aligned}$$
(34)

Based on the properties (1) and (2) of Rank, \(\mathrm{Rank}\big (\mathbf{{A}}(\theta )\big )\le L\) and \(\mathrm{Rank}(\mathbf{{S}})\le L\), then \(\mathrm{Rank}\big (\mathbf{{A}}(\theta )\mathbf{{S}}\big )\le L\).

The Kronecker product can be rewritten as

$$\begin{aligned} \mathbf{{s}}(k)\otimes \mathbf{{s}}^*(k) = \mathrm{vec}\Big (\mathbf{{s}}(k)\mathbf{{s}}^*(k)^{T}\Big ), \end{aligned}$$
(35)

where \(\mathrm{vec}\left(\mathbf{X}\right)\) denotes the vectorization of the matrix \(\mathbf{X}\) formed by stacking the columns of \(\mathbf{X}\) into a single column vector.

Since

$$\begin{aligned} \mathbf{{s}}(k)\mathbf{{s}}^*(k)^{T}&= \left(\mathbf{{s}}(k)\cdot \mathbf{{s}}^*(k)^{T}\right)^{T}\nonumber \\&= \left[\begin{array}{cccc} s_{1}(k)s_{1}^*(k)\,&s_{1}(k)s_{2}^*(k)&\cdots&s_{1}(k)s_{L}^*(k)\\ s_{2}(k)s_{1}^*(k) \,&s_{2}(k)s_{2}^*(k)&\vdots&\vdots \\ \vdots \,&\vdots \,&\ddots&\vdots \\ s_{L}(k)s_{1}^*(k) \,&\cdots&\cdots&s_{L}(k)s_{L}^*(k)\end{array}\right], \end{aligned}$$
(36)

then the rank of \(\mathbf{{S}~\odot }~\mathbf{{S}}^*\) is

$$\begin{aligned} \mathrm{Rank}\big (\mathbf{{S}~\odot }~\mathbf{{S}}^*\big )\le L^2. \end{aligned}$$
(37)

and

$$\begin{aligned} \mathrm{Rank}\big (\mathbf{{A}}(\theta )\otimes \mathbf{{A}}^*(\theta )\big ) \le L^2, \end{aligned}$$
(38)

and

$$\begin{aligned} \mathrm{Rank}\Big (\big (\mathbf{{A}}(\theta )\otimes \mathbf{{A}}^*(\theta )\big )\cdot \big (\mathbf{{S}\odot {S}}^*\big )\Big ) \le L^2. \end{aligned}$$
(39)

Based on the above property \((3)\), we obtain

$$\begin{aligned} \mathrm{Rank}\left[\begin{array}{c} \mathbf{{A}}(\theta )\mathbf{{S}}\\ \big (\mathbf{{A}}(\theta )\otimes \mathbf{{A}}^*(\theta )\big ) \cdot \big (\mathbf{{S}\odot {S}}^*\big )\end{array} \right]\le L+L^2. \end{aligned}$$
(40)

The dimension of the signal subspace

$$\begin{aligned} N_s=L+L^2. \end{aligned}$$
(41)

The number of noise eigenvectors \(N_{e}\) used to perform DOA estimation is given by

$$\begin{aligned} N_e=N-N_s=\frac{M(M+3)}{2}-L(L+1). \end{aligned}$$
(42)

Table 1 shows the dimension of the signal subspace \(N_s\) and the number of noise eigenvectors \(N_{e}\) used to perform DOA estimation, for different number of sensors \(M\) and different number of sources \(L\).

Table 1 The dimension of the signal subspace \(N_s\) and the number of noise eigenvectors \(N_{e}\) used to perform DOA estimation, for different number of sensors \(M\) and different number of sources \(L\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, F., Ng, B.P. A new DOA estimation approach using Volterra signal model. Multidim Syst Sign Process 25, 741–758 (2014). https://doi.org/10.1007/s11045-013-0228-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0228-5

Keywords

Navigation