Skip to main content
Log in

Voxel selection and neural decoding of fMRI data based on robust sparse programming with multi-dimensional derivative constraints

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Recently, sparse representation has received a great deal of attention in voxel selection and decoding analysis of functional magnetic resonance imaging (fMRI) data. Due to contamination of large noise in fMRI data, the conventional sparse representation methods may not get stable results. Moreover, the selected activated brain regions may lose clustering effects and are less biologically interpretable. In order to overcome the above mentioned problems, we exploit the error-tolerant formulation of sparse representation and introduce multi-dimensional derivative constraints (smoothness constraints) in optimization. Two new methods are proposed in this paper. One is robust voxel selection with multi-dimensional constraint (RVSMDC). With the error-tolerant formulation and smoothness constraints on regression coefficients, RVSMDC is robust against noise/error and achieves clustering effects. To directly decode neural activities from fMRI data, we also proposed robust sparse decoding with multi-dimensional constraints (RSDMDC), which minimize the regression error of fMRI data to the task function with sparsity and smoothness constraints on regression coefficients. Numerical results validate the effectiveness of the two proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bader, B. W., & Kolda, T. G. (2007). Efficient MATLAB computations with sparse and factored tensors. SIAM Journal on Scientific Computing, 30(1), 205–231.

    Article  MATH  MathSciNet  Google Scholar 

  • Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25(2), 390–397.

    Google Scholar 

  • Birn, R. M., Saad, Z. S., & Bandettini, P. A. (2001). Spatial heterogeneity of the nonlinear dynamics in the fMRI BOLD response. NeuroImage, 14(4), 817–826.

    Article  Google Scholar 

  • Bunea, F., She, Y., Ombao, H., Gongvatana, A., Devlin, K., & Cohen, R. (2011). Penalized least squares regression methods and applications to neuroimaging. NeuroImage, 55(4), 1519–1527.

    Article  Google Scholar 

  • Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magnetic Resonance in Medicine, 39(6), 855–864.

    Article  Google Scholar 

  • Carlson, T. A., Schrater, P., & He, S. (2003). Patterns of activity in the categorical representations of objects. Journal of Cognitive Neuroscience, 15(5), 704–717.

    Article  Google Scholar 

  • Carroll, M. K., Cecchi, G. A., Rish, I., Garg, R., & Rao, A. R. (2009). Prediction and interpretation of distributed neural activity with sparse models. NeuroImage, 44(1), 112–122.

    Article  Google Scholar 

  • Cohen, M. S., & Bookheimer, S. Y. (1994). Localization of brain function using magnetic resonance imaging. Trends in Neurosciences, 17(7), 268–277.

    Article  Google Scholar 

  • Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) brain reading: Detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2), 261–270.

    Article  Google Scholar 

  • Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear responses in fMRI: The balloon model, volterra kernels, and other hemodynamics. NeuroImage, 12(4), 466–477.

    Article  Google Scholar 

  • Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E., & Penny, W. D. (2007). Statistical parametric mapping: The analysis of funtional brain images. Amsterdam: Academic Press.

  • Grosenick, L., Greer, S., & Knutson, B. (2008). Interpretable classifiers for fMRI improve prediction of purchases. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 539–548.

    Article  Google Scholar 

  • Guo, X., Wan, Q., Chang, C., & Lam, E. Y. (2010). Source localization using a sparse representation framework to achieve superresolution. Multidimensional Systems and Signal Processing, 21(4), 391–402.

    Article  MATH  MathSciNet  Google Scholar 

  • Harrison, L. M., Penny, W., Daunizeau, J., & Friston, K. J. (2008). Diffusion-based spatial priors for functional magnetic resonance images. NeuroImage, 41(2–3), 408.

    Article  Google Scholar 

  • Jiang, L., & Yin, H. (2012). Bregman iteration algorithm for sparse nonnegative matrix factorizations via alternating l1-norm minimization. Multidimensional Systems and Signal Processing, 23(3), 315–328.

    Article  MathSciNet  Google Scholar 

  • LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. NeuroImage, 26(2), 317.

    Article  Google Scholar 

  • Li, Y., Namburi, P., Yu, Z., Guan, C., Feng, J., & Gu, Z. (2009). Voxel selection in fMRI data analysis based on sparse representation. IEEE Transactions on Biomedical Engineering, 56(10), 2439–2451.

    Article  Google Scholar 

  • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157.

    Article  Google Scholar 

  • Logothetis, N. K. (2003). The underpinnings of the BOLD functional magnetic resonance imaging signal. The Journal of Neuroscience, 23(10), 3963–3971.

    Google Scholar 

  • Mitchell, T. M., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M., et al. (2004). Learning to decode cognitive states from brain images. Machine Learning, 57(1), 145–175.

    Article  MATH  Google Scholar 

  • Oikonomou, V. P., Blekas, K., & Astrakas, L. (2012). A sparse and spatially constrained generative regression model for fMRI data analysis. IEEE Transactions on Biomedical Engineering, 59(1), 58–67.

    Article  Google Scholar 

  • O’toole, A. J., Jiang, F., Abdi, H., & Haxby, J. V. (2005). Partially distributed representations of objects and faces in ventral temporal cortex. Journal of Cognitive Neuroscience, 17(4), 580–590.

    Article  Google Scholar 

  • Pizzagalli, D. A., Sherwood, R. J., Henriques, J. B., & Davidson, R. J. (2005). Frontal brain asymmetry and reward responsiveness a source-localization study. Psychological Science, 16(10), 805–813.

    Article  Google Scholar 

  • Rorden, C., & Karnath, H. O. (2004). Using human brain lesions to infer function: A relic from a past era in the fMRI age? Nature Reviews Neuroscience, 5(10), 812–819.

    Article  Google Scholar 

  • Spiridon, M., & Kanwisher, N. (2002). How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron, 35(6), 1157–1166.

    Article  Google Scholar 

  • Stephan, K. E., Kasper, L., Harrison, L. M., Daunizeau, J., den Ouden, H. E. M., Breakspear, M., et al. (2008). Nonlinear dynamic causal models for fMRI. NeuroImage, 42(2), 649–662.

    Article  Google Scholar 

  • Strother, S. C., Anderson, J., Hansen, L. K., Kjems, U., Kustra, R., Sidtis, J., et al. (2002). The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework. NeuroImage, 15(4), 747–771.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B: Methodological, 58(1), 267–288.

    Google Scholar 

  • Vazquez, A. L., & Noll, D. C. (1998). Nonlinear aspects of the BOLD response in functional MRI. NeuroImage, 7(2), 108–118.

    Article  Google Scholar 

  • Yamashita, O., Sato, M., Yoshioka, T., Tong, F., & Kamitani, Y. (2008). Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. NeuroImage, 42(4), 1414–1429.

    Article  Google Scholar 

  • Yetkin, F. Z., McAuliffe, T. L., Cox, R., & Haughton, V. M. (1996). Test-retest precision of functional MR in sensory and motor task activation. American Journal of Neuroradiology, 17(1), 95–98.

    Google Scholar 

  • Yu, Z., Gu, Z., & Li, Y. (2011). A sparse voxel selection approach for fMRI data analysis with multi-dimensional derivative constraints. In Multidimensional (nD) systems (nDs), (2011). 7th international workshop on. IEEE, 2011, pp. 1–4.

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grants 61105121, 61175114, 91120305, the Natural Science Foundation of Guangdong under Grants S2012020010945, the Fundamental Research Funds for the Central Universities, SCUT under Grants 2012ZG0008, 2013ZZ0040, the National High-tech R&D Program of China (863 Program) under Grant 2012AA011601, and High Level Talent Project of Guangdong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuliang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z., Feng, B., Gu, Z. et al. Voxel selection and neural decoding of fMRI data based on robust sparse programming with multi-dimensional derivative constraints. Multidim Syst Sign Process 26, 225–241 (2015). https://doi.org/10.1007/s11045-013-0254-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0254-3

Keywords

Navigation