Skip to main content

Advertisement

Log in

DOA estimation of moving sound sources in the context of nonuniform spatial noise using acoustic vector sensor

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, DOA estimation of moving sound source using an acoustic vector-sensor in the context of spatially nonuniform noise is discussed. We propose a novel method for DOA tracking. In this method, non-uniform noise covariance is first estimated using acoustic vector sensor measurement and then the weighted parameter of conventional maximum power (MP) method is fixed by noise pre-whitening technique. In this way the weighted parameter selection problem of MP is solved when the noise powers of monopole and dipole are unknown. Moreover, under the assumption of constant velocity model of source dynamics, the DOA estimation by the improved maximum energy method is treated as measuring information and the Kalman filter algorithm in polar coordinate system is introduced to improve the accuracy of DOA estimation of moving sources. Theoretical analysis and simulation results demonstrate that the mean square angle error of the proposed method is lower than the traditional Cramer–Rao lower bound which only employs static measurement information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Cao, Y.-c., & Fang, J.-a. (2009, May). Constrained Kalman filter for localization and tracking based on TDOA and DOA measurements. In: 2009 international conference on signal processing systems, IEEE (pp. 15–17) 28–33 May 2009.

  • D’Spain, G. L., Hodgkiss, W. S., & Edmonds, G. L. (1991). the simultaneous measurement of infrasonic acoustic particle velocity and acoustic pressure in the ocean by freely drifting swallow floats. IEEE Journal of Oceanic Engineering, 16(2), 195–207.

    Article  Google Scholar 

  • Hawkes, M., & Nehorai, A. (1999). Effects of sensor placement on acoustic vector sensor array performance. IEEE Journal of Oceanic Engineering, 24(1), 33–40.

    Article  Google Scholar 

  • Hu, D.-x., Zhao, Y.-j., Li, & D.-h. (2010). Joint source number detection and DOA track using particle filter. In Measuring Technology and Mechatronics Automation (ICMTMA), IEEE (pp. 541–544). 13–14 March 2010.

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME Journal of Basic Engineering, pp. 35–45.

  • Levin, D., Gannot, S., & Habets, E. A. P. (2011). Direction-of-arrival estimation using acoustic vector sensors in the presence of noise. In IEEE international conference acoustics, speech and signal processing (pp. 105–108).

  • Levin, D., Habets, E. A. P., & Gannot, S. (2012). Maximum likelihood estimation of direction of arrival using an acoustic vector-sensor. The Journal of the Acoustical Society of America, 131(2), 1240–1248.

    Article  Google Scholar 

  • Liu, Z., Ruan, X., & He, J. (2013). Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array. Multidimensional Systems and Signal Processing, 24(1), 105–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Nehorai, A., & Paldi, E. (1994). Acoustic vector sensor array processing. IEEE Transactions on Signal Processing, 42(9), 2481–2491.

    Article  Google Scholar 

  • Palanisamy, P., & Kalyanasundaram, N. (2012). Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array. Journal of Signal Processing, 92, 19–28.

    Article  Google Scholar 

  • Wu, Y-t, & Hou, C-h. (2006). Direction-of-arrival estimation in the presence of unknown nonuniform noise fields. IEEE Journal of Oceanic Engineering, 31(2), 504–510.

    Article  Google Scholar 

  • Zhong, X-h, Premkumar, A. B., & Madhukumar, A. S. (2012). particle filtering and posterior Cramér-Rao bound for 2-D direction of arrival tracking using an acoustic vector sensor. IEEE Sensors Journal, 12(2), 363–376.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (No. U1204611, No. 61300214 and No. 61374134), Nature Science Foundation of Henan Province of China (132300410278, 132300410148) and Science and Technology Innovation Team Support Program of Henan Province, China (13IRTSTHN021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jin.

Appendices

Appendix 1

From the relationship between noise covariance matrix \(\varvec{\varOmega }_k\) and received signal covariance matrix \({{\varvec{C}}}_k \), we can get estimation of the noise covariance matrix \(\varvec{\varOmega }_k\),namely \({\hat{\varvec{\varOmega }}}_k\), at time step \(k\), and Yun-tao and Hou (2006) shows us an useful noise covariance matrix estimating method.

Firstly, the matrix \({{\varvec{C}}}_k^D \) in formula (15) can be expressed as

$$\begin{aligned} {{\varvec{C}}}_k^D&= {\varvec{DC}}_k {\varvec{D}}^{\mathrm{T}} \nonumber \\&= {{\varvec{D}}}\!\left( {{{\varvec{a}}}(\varvec{\varTheta }_k )\delta _{s,k}^2 {{\varvec{a}}}(\varvec{\varTheta }_k )^{\mathrm{T}}+\varvec{\omega }_k} \right) {\varvec{D}}^{\mathrm{T}} \nonumber \\&= {\varvec{D}}{{\varvec{a}}}(\varvec{\varTheta }_k )\delta _{s,k}^2 {{\varvec{a}}}(\varvec{\varTheta }_k)^{\mathrm{T}}{\varvec{D}}^{\mathrm{T}}+{\varvec{D}}\varvec{\omega }_k D^{\mathrm{T}} \nonumber \\&= {{\varvec{B}}}_k \delta _{s,k}^2 {{\varvec{B}}}_k^{\mathrm{T}}+\varvec{\omega }_k^{\varvec{D}} \end{aligned}$$
(30)

where

$$\begin{aligned} {{\varvec{B}}}_k&= {{\varvec{Da}}}(\varvec{\varTheta }_k )=\left[ {{\begin{array}{l@{\quad }l@{\quad }l} {B_{k,1}}&{} {B_{2,k}}&{} {B_{3,k}} \\ \end{array}}} \right] ^{\mathrm{T}},\end{aligned}$$
(31)
$$\begin{aligned} \varvec{\varOmega }_k^{\varvec{D}}&= {\varvec{D}}\varvec{\varOmega }_k {\varvec{D}}^{\mathrm{T}}=\textit{diag}\left\{ {\left[ {{\begin{array}{l@{\quad }l@{\quad }l} {\varOmega _{k,1}^D}&{} {{\varOmega }_{k,2}^D}&{} {{\varOmega }_{k,3}^D} \\ \end{array}}} \right] } \right\} . \end{aligned}$$
(32)

Combine with the formula (15), we have the following

$$\begin{aligned} \hat{{c}}_{11}&= B_{k,1} \delta _{s,k}^2 B_{k,1}^{\mathrm{T}}+{\varOmega }_{k,1}^D,\end{aligned}$$
(33)
$$\begin{aligned} \hat{{c}}_{22}&= B_{k,2} \delta _{s,k}^2 B_{k,2}^{\mathrm{T}}+{\varOmega }_{k,2}^D,\end{aligned}$$
(34)
$$\begin{aligned} \hat{{x}}_2&= B_{k,1} \delta _{s,k}^2 B_{k,3}^{\mathrm{T}},\end{aligned}$$
(35)
$$\begin{aligned} \hat{{x}}_3&= B_{k,2} \delta _{s,k}^2 {B_{k,1}}^{\mathrm{T}},\end{aligned}$$
(36)
$$\begin{aligned} \hat{{x}}_4&= B_{k,2} \delta _{s,k}^2 {B_{k,3}}^{\mathrm{T}}. \end{aligned}$$
(37)

Therefore, we obtain

$$\begin{aligned} {\varOmega }_{k,1}^D&= \hat{{c}}_{11} -B_{k,1} \delta _{s,k}^2 B_{k,1} ^{\mathrm{T}} \nonumber \\&= \hat{{c}}_{11} -B_{k,1} \delta _{s,k}^2 {B_{k,1}}^{\mathrm{T}}-\hat{{x}}_2 \hat{{x}}_4^{-1}\hat{{x}}_3 +\hat{{x}}_2 \hat{{x}}_4^{-1}\hat{{x}}_3 \nonumber \\&= \hat{{c}}_{11} -\hat{{x}}_2 \hat{{x}}_4^{-1}\hat{{x}}_3 -B_{k,1} \delta _{s,k}^2 B_{k,1}^{\mathrm{T}}+B_{k,1} \delta _{s,k}^2 B_{k,3} ^{\mathrm{T}}\left( {B_{k,2} \delta _{s,k}^2 B_{k,3}^{\mathrm{T}}} \right) ^{-1}B_{k,2} \delta _{s,k}^2 B_{k,1}^\mathrm{T} \nonumber \\&= \hat{{c}}_{11} -\hat{{x}}_2 \hat{{x}}_4^{-1}\hat{{x}}_3 \end{aligned}$$
(38)

Similarly,

$$\begin{aligned} {\varOmega }_{k,2}^D =\hat{{c}}_{22} -\hat{{x}}_3 \hat{{x}}_5 ^{-1}\hat{{x}}_6. \end{aligned}$$
(39)

As and , \({\varOmega }_{\mathrm{k,1}} ={\varOmega }_{k,1}^D \) and \({\varOmega }_\mathrm{k,2} ={\varOmega }_{k,2}^D \).

Also, as \({{\varvec{a}}}(\varvec{\varTheta }_k )=\left[ {{\begin{array}{l} {a_1 (\varvec{\varTheta }_k )} \\ {a_2 (\varvec{\varTheta }_k )} \\ {{{\varvec{a}}}_3 (\varvec{\varTheta }_k )_{2\times 1}} \\ \end{array}}} \right] \), \(C_k ={{\varvec{a}}}(\varvec{\varTheta }_k )\delta _{s,k}^2 {{\varvec{a}}}(\varvec{\varTheta }_k )^{\mathrm{T}}+\hat{\varvec{\varOmega }}_k\) can be developed and expressed as formula (16), where

$$\begin{aligned} \hat{{c}}_1&= a_2 ({\varvec{\varTheta }}_k )\delta _{\mathrm{s,k}}^2 a_1 (\varvec{\varTheta }_k )^{\mathrm{T}},\end{aligned}$$
(40)
$$\begin{aligned} \hat{{\varvec{c}}}_2&= {{\varvec{a}}}_3 ({\varvec{\varTheta }}_k )\delta _{\mathrm{s,k}}^2 a_1 (\varvec{\varTheta }_k )^{\mathrm{T}},\end{aligned}$$
(41)
$$\begin{aligned} \hat{{\varvec{c}}}_3&= a_2 (\varvec{\varTheta }_k )\delta _{\mathrm{s,k}}^2 {{\varvec{a}}}_3 (\varvec{\varTheta }_k )^{\mathrm{T}},\end{aligned}$$
(42)
$$\begin{aligned} \hat{{\varvec{c}}}_4&= {{\varvec{a}}}_3 (\varvec{\varTheta }_k )\delta _{\mathrm{s,k}}^2 {{\varvec{a}}}_3 (\varvec{\varTheta }_k )^{\mathrm{T}}+\varvec{\varOmega }_{k,3}. \end{aligned}$$
(43)

Here we just provide the elements of formula (16) above because other elements is irrelevant to estimate the noise covariance matrix \(\hat{\varvec{\varOmega }}_k\).

Based on the previous assumptions, the following is easily derived by

$$\begin{aligned} \varvec{\varOmega }_{k,3}&= \hat{{\varvec{c}}}_4 -{{\varvec{a}}}_3 (\varvec{\varTheta }_k )\delta _{\mathrm{s,k}}^2 {{\varvec{a}}}_3 (\varvec{\varTheta }_k )^{\mathrm{T}} \nonumber \\&= \hat{{\varvec{c}}}_4 -\hat{{\varvec{c}}}_2 \hat{{c}}_1^{-1} \hat{{\varvec{c}}}_3 +\hat{{\varvec{c}}}_2 \hat{{c}}_1 ^{-1}\hat{{\varvec{c}}}_3 -{{\varvec{a}}}_3 (\varvec{\varTheta }_k )\delta _{\mathrm{s,k}}^2 {{\varvec{a}}}_3 (\varvec{\varTheta }_k )^{\mathrm{T}} \nonumber \\&= \hat{{\varvec{c}}}_4 -\hat{{\varvec{c}}}_2 \hat{{c}}_1^{-1} \hat{{\varvec{c}}}_3 +{{\varvec{a}}}_3 (\varvec{\varTheta }_k )\delta _{\mathrm{s,k}}^2 a_1 (\varvec{\varTheta }_k )^{\mathrm{T}}\left[ {a_2 (\varvec{\varTheta }_k )\delta _{\mathrm{s,k}}^2 a_1 (\varvec{\varTheta }_k )^{\mathrm{T}}} \right] ^{-1}a_2 ({\varvec{\varTheta }}_k )\delta _{\mathrm{s,k}}^2 {{\varvec{a}}}_3 (\varvec{\varTheta }_k )^{\mathrm{T}}\nonumber \\&-\,{{\varvec{a}}}_3 (\varvec{\varTheta }_k )\delta _{\mathrm{s,k}}^2 {{\varvec{a}}}_3 (\varvec{\varTheta }_k )^{\mathrm{T}} \nonumber \\&= \hat{{\varvec{c}}}_4 -\hat{{\varvec{c}}}_2 \hat{{c}}_1^{-1} \hat{{\varvec{c}}}_3 \end{aligned}$$
(44)

Thus, estimation of noise covariance matrix \(\hat{\varvec{\varOmega }}_k \) is worked out.

Appendix 2

In this appendix, we present a brief sketch of the algorithm presented in Levin et al. (2011) for MP method. And in IMP method, we pre-whiten the AVS received data and fix the weighted parameter \(\alpha _{k}^{p}\) to 0.5, the MP method is shown as follows:

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Y., Liu, X., Hu, Z. et al. DOA estimation of moving sound sources in the context of nonuniform spatial noise using acoustic vector sensor. Multidim Syst Sign Process 26, 321–336 (2015). https://doi.org/10.1007/s11045-013-0273-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0273-0

Keywords