Abstract
The paper proposes a two step algorithm that reduces a bivariate polynomial matrix \(T\left( s,z\right) \) expressed in Newton or Lagrange base to a bivariate matrix pencil \(A+E_{1}s+E_{2}z\) with the same invariant polynomials and zero structure.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Amiraslani, A., Corless, R., & Lancaster, P. (2009). Linearization of matrix polynomials expressed in polynomial bases. IMA Journal of Numerical Analysis, 29(1), 141–157.
Aruliah, D. A., Corless, R. M., Gonzalez-Vega, L., & Shakoori, A. (2007). Companion matrix pencils for hermite interpolants. In Proceedings of the 2007 international workshop on symbolic-numeric computation, SNC’07 (pp. 197–198).
Bosgra, O., & Van Der Weiden, A. (1981). Realizations in generalized state-space form for polynomial system matrices and the definitions of poles, zeros and decoupling zeros at infinity. International Journal of Control, 33, 393–411.
Boudellioua, M. S. (2006). An equivalent matrix pencil for bivariate polynomial matrices. International Journal of Applied Mathematics and Computer Science, 16(2), 175–181.
Corless, R., & Litt, G. (2001). Generalized companion matrices for polynomials not expressed in monomial bases, applied math. Technical report University of Western Ontario.
Corless, R. M. (2004). Generalized companion matrices in the lagrange basis. In L. GonzalezVega, T. Recio, (Eds.), Proceedings EACA (pp. 317–322).
Corless, R. M. (2007). On a generalized companion matrix pencil for matrix polynomials expressed in the Lagrange basis. In Symbolic-numeric computation. Invited and contributed presentations given at the international workshop (SNC’2005), Xi’an, China, (pp. 1–15) Basel: Birkhäuser. 19–21 July (2005).
Gałkowski, K. (1997a). Elementary operation approach to state-space realizations of 2-D systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44(2), 120–129.
Gałkowski, K. (1997b). State-space realizations of multi-input multi-output systems—elementary operations approach. International Journal of Control, 66(1), 119–144.
Gantmacher, F. (1959). Applications of the theory of matrices, Vol. IX. New York-London: Interscience Publishers, 317 p.
Hayton, G. E., Walker, A. B., & Pugh, A. C. (1989). Matrix pencil equivalents of general polynomial matrix. International Journal of Control, 49(6), 1979–1987.
Hayton, G. E., Walker, A. B., & Pugh, A. C. (1990). Infinite frequency structure-preserving transformations for general polynomial system matrices. International Journal of Control, 52(1), 1–14.
Johnson, D. (1993). Coprimeness in multidimensional system theory and symbolic computation. Ph.D. Thesis, Loughborough: University of Technology.
Jury, E. (1978). Stability of multidimensional scalar and matrix polynomials. Memorandum (University of California, Berkeley, Electronics Research Laboratory), Electronics Research Laboratory, College of Engineering, University of California.
Kaczorek, T. (1988). The singular general model of 2-D systems and its solution. IEEE Transactions on Automatic Control, 33(11), 1060–1061.
Karampetakis, N., & Vardulakis, A. (1992). Matrix fractions and full system equivalence. IMA Journal of Mathematical Control and Information, 9(2), 147–160.
Karampetakis, N., & Vardulakis, A. (1993). Generalized state-space system matrix equivalents of a Rosenbrock system matrix. IMA Journal of Mathematical Control and Information, 10(4), 323–344.
Karampetakis, N. P., Vardulakis, A. I., & Pugh, A. C. (1995). A classification of generalised state space reduction methods for linear multivariable systems. Kybernetika, 31(6), 547–557.
Karampetakis, N. P. (2010). Matrix pencil equivalents of symmetric polynomial matrices. Asian Journal of Control, 12(2), 177–186.
Lévy, B. (1981). 2-D polynomial and rational matrices, and their applications for the modeling of 2-D dynamical systems. Ph.D. Thesis, Stanford: Stanford University.
Lewis, F. (1992). A review of 2-D implicit systems. Automatica, 28(2), 345–354.
Lin, Z., Boudellioua, M., & Xu, L. (2006). On the equivalence and factorization of multivariate polynomial matrices. In Proceedings of 2006 IEEE International Symposium on Circuits and Systems (pp. 4911–4914).
Pugh, A. C., Hayton, G. E., & Fretwell, P. (1987). Transformations of matrix pencils and implications in linear systems theory. International Journal of Control, 45, 529–548.
Pugh, A. C., McInerney, S. J., Boudellioua, M. S., & Hayton, G. E. (1998a). Matrix pencil equivalents of a general 2-D polynomial matrix. International Journal of Control, 71(6), 1027–1050.
Pugh, A. C., McInerney, S. J., Boudellioua, M. S., Johnson, D. S., & Hayton, G. E. (1998b). A transformation for 2-D linear systems and a generalization of a theorem of Rosenbrock. International Journal of Control, 71(3), 491–503.
Pugh, A., & McInerney, S. J. (2005). Equivalence and reduction of 2-D systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(5), 271–275.
Pugh, A. C., & Shelton, A. K. (1978). On a new definition of strict system equivalence. International Journal of Control, 27(5), 657–672.
Rosenbrock, H. (1970). State-space and multivariable theory, Studies in Dynamical Systems Series. Wiley Interscience Division.
Shakoori, A. (2008). Bivariate polynomial solver by values. Canadian theses, Library and Archives Canada.
Smith, M. (1981). Matrix fractions and strict system equivalence. International Journal of Control, 34, 869–883.
Uetake, Y., & Okubo, S. (1988). Solvability, stability and invertibility for 2-D descriptor systems. Transactions of the Society of Instrument and Control Engineers, 24(7), 755–757.
Wolovich, W. (1974). Linear multivariable systems. In Applied Mathematical Sciences. 11. New York–Heidelberg–Berlin: Springer. IX, 358 p. (with 28 illus. DM 23.30).
Wood, J., Oberst, U., Rogers, E., & Owens, D. H. (2000). A behavioral approach to the pole structure of one-dimensional and multidimensional linear systems. SIAM Journal on Control and Optimization, 38(2), 627–661.
Zerz, E. (1996). Primeness of multivariate polynomial matrices. Systems & Control Letters, 29(3), 139–145.
Zaris, P., Wood, J., & Rogers, E. (2001). Controllable and uncontrollable poles and zeros of \(n\)D systems. MCSS Mathematics of Control, Signals, and Systems, 14(3), 281–298.
Acknowledgments
This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: ARCHIMEDES III. Investing in knowledge society through the European Social Fund.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karetsou, A.S., Karampetakis, N.P. Linearization of bivariate polynomial matrices expressed in non monomial basis. Multidim Syst Sign Process 26, 503–517 (2015). https://doi.org/10.1007/s11045-014-0278-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-014-0278-3
Keywords
- Bivariate polynomial matrix
- Matrix pencil
- Companion form
- Unimodular equivalence
- Zero coprime equivalence
- Newton basis
- Lagrange basis