Skip to main content

Advertisement

Log in

An improved adaptive constrained constant modulus reduced-rank algorithm with sparse updates for beamforming

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we propose an adaptive set-membership (SM) reduced-rank filtering algorithm using the constrained constant modulus criterion for beamforming. We develop a stochastic gradient type algorithm based on the concept of SM techniques for adaptive beamforming. The filter weights are updated only if the bounded constraint cannot be satisfied. We also propose a scheme of time-varying bound and incorporate parameter dependence to characterize the environment for improving the tracking performance. A detailed analysis of the proposed algorithm in terms of computational complexity and stability is carried out. Simulation results verify the analytical results and show that the proposed adaptive SM reduced-rank beamforming algorithms with a dynamic bound achieve superior performance to previously reported methods at a reduced update rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. ULA is considered for the sake of simplifying the presentation, while generalization to other antenna configurations is straightforward.

  2. For the proposed algorithm with the fixed bound scheme, the convergence factor is the bound \(\gamma \). For the proposed algorithm with the time-varying bound scheme, the convergence factors are the tuning coefficients \(\rho \) and \(g\). The relationships between the convergence factors and the step-size values are shown in expressions (20), (21) and (22).

References

  • Anderson, S., Millnert, M., Viberg, M., & Wahlberg, B. (1991). An adaptive array for mobile communication systems. IEEE Transactions on Vehicular Technology, 40(1), 230–236.

    Article  Google Scholar 

  • Boray, G. K., & Srinath, M. D. (1992). Conjugate gradient techniques for adaptive filtering. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 39(1), 1–10.

    Article  Google Scholar 

  • Burykh, S., & Abed-Meraim, K. (2002). Reduced-rank adaptive filtering using Krylov-subspace. EURASIP Journal on Applied Signal Processing, 2002(1), 1387–1400.

    Article  MATH  Google Scholar 

  • Cao, J. (2014, July 28–30). Survey on acoustic vector sensor and its applications in signal processing. In Proceedings of the 33rd Chinese control conference (CCC2014), Nanjing, China, pp. 7456–7461.

  • Cai, Y., & de Lamare, R. C. (2009). Low-complexity variable step-size mechanism for code-constrained constant modulus stochastic gradient algorithms applied to CDMA interference suppression. IEEE Transactions on Signal Processing, 57(1), 313–323.

    Article  MathSciNet  Google Scholar 

  • Cai, Y., & de Lamare, R. C. (2013). Adaptive linear minimum BER reduced-rank interference suppression algorithms based on joint and iterative optimization of filters. IEEE Communications Letters, 17(4), 633–636.

    Article  Google Scholar 

  • Cai, Y., de Lamare, R. C., Zhao, M., & Zhong, J. (2012). Low-complexity variable forgetting factor mechanism for blind adaptive constrained constant modulus algorithms. IEEE Transactions on Signal Processing, 60(8), 3988–4002.

    Article  MathSciNet  Google Scholar 

  • Cao, J. A., Khong, W. H., & Gannot, S. (2014, September 8–11). On the performance of widely linear Quaternion based MVDR beamformer for an acoustic vector sensor. In Proceedings of the international workshop on acoustic signal enhancement (IWAENC 2014), Juan les Pins, French Riviera, pp. 304–308.

  • Cao, J., & Lin, Z. (2014). Bayesian signal detection with compressed measurements. Information Sciences, 289, 241–253.

    Article  Google Scholar 

  • Chang, P. S., & Willson, A. N. (2000). Analysis of conjugate gradient algorithms for adaptive filtering. IEEE Transactions on Signal Processing, 48(2), 409–418.

    Article  MATH  Google Scholar 

  • de Lamare, R. C., & Diniz, P. S. R. (2013). Blind adaptive interference suppression based on set-membership constrained constant-modulus algorithms with dynamic bounds. IEEE Transactions on Signal Processing, 61(5), 1288–1301.

    Article  MathSciNet  Google Scholar 

  • de Lamare, R. C., Haardt, M., & Sampaio-Neto, R. (2008). Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression. IEEE Transactions on Signal Processing, 56(6), 2470–2482.

    Article  MathSciNet  Google Scholar 

  • de Lamare, R. C., & Sampaio-Neto, R. (2005). Blind adaptive code-constrained constant modulus algorithms for CDMA interference suppression in multipath channels. IEEE Communications Letters, 9(4), 334–336.

    Google Scholar 

  • de Lamare, R. C., & Sampaio-Neto, R. (2005). Adaptive reduced-rank MMSE filtering with interpolated FIR filters and adaptive interpolators. IEEE Signal Processing Letters, 12(3), 177–180.

    Article  Google Scholar 

  • de Lamare, R. C., & Sampaio-Neto, R. (2007). Reduced-rank adaptive filtering based on joint iterative optimization of adaptive filters. IEEE Signal Processing Letters, 14(12), 980–983.

    Article  Google Scholar 

  • de Lamare, R. C., & Sampaio-Neto, R. (2009). Adaptive reduced-rank processing based on joint and iterative interpolation, decimation, and filtering. IEEE Transactions on Signal Processing, 57(7), 2503–2514.

    Article  MathSciNet  Google Scholar 

  • de Lamare, R. C., & Sampaio-Neto, R. (2010). Reduced-rank space–time adaptive interference suppression with joint iterative least squares algorithms for spread-spectrum systems. IEEE Transactions on Vehicular Technology, 59(3), 1217–1228.

    Article  Google Scholar 

  • de Lamare, R. C., Sampaio-Neto, R., & Haardt, M. (2011). Blind adaptive constrained constant-modulus reduced-rank interference suppression algorithms based on interpolation and switched decimation. IEEE Transactions on Signal Processing, 59(2), 681–695.

    Article  MathSciNet  Google Scholar 

  • de Lamare, R. C., Wang, L., & Fa, R. (2010). Adaptive reduced-rank LCMV beamforming algorithms based on joint iterative optimization of filters: design and analysis. Signal Processing, 90, 640–652.

    Article  MATH  Google Scholar 

  • Diniz, P. S. R. (2002). Adaptive filtering: Algorithms and practical implementations (2nd ed.). Boston, MA: Kluwer.

    MATH  Google Scholar 

  • Fa, R., & de Lamare, R. C. (2011). Reduced-rank STAP algorithms using joint iterative optimization of filters. IEEE Transactions on Aerospace and Electronic Systems, 47(3), 1668–1684.

    Article  Google Scholar 

  • Ge, H., Kirsteins, I. P., & Scharf, L. L. (2006, May). Data dimension reduction using Krylov subspaces: Making adaptive beamformers robust to model order-determination. In: 31st IEEE international conference on acoustics, speech and signal processing, Vol. 4, Toulouse, France, pp. 1001–1004.

  • Gierull, C. H. (1997). Statistical analysis of the eigenvector projection method for adaptive spatial filtering of interference. IEE Proceedings on Radar, Sonar and Navigation, 144(2), 57–63.

    Article  Google Scholar 

  • Goldstein, J. S., & Reed, I. S. (1997). Reduced-rank adaptive filtering. IEEE Transactions on Signal Processing, 45(2), 492–496.

    Article  Google Scholar 

  • Goldstein, J. S., & Reed, I. S. (1997). Subspace selection for partially adaptive sensor array processing. IEEE Transactions on Aerospace and Electronic Systems, 33(2), 539–544.

    Article  Google Scholar 

  • Goldstein, J. S., Reed, I. S., & Scharf, L. L. (1998). A multistage representation of the Wiener filter based on orthogonal projections. IEEE Transactions on Information Theory, 44(11), 2943–2959.

    Article  MathSciNet  MATH  Google Scholar 

  • Gollamudi, S., Nagaraj, S., & Huang, Y. F. (2000, June). Blind equalization with a deterministic constant modulus cost—A set-membership filtering approach. In Proceedings of the IEEE international conference on acoustics speech, signal processing (ICASSP), Vol. 5, pp. 2765–2768.

  • Gollamudi, S., Nagaraj, S., & Huang, Y. F. (1998). Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size. IEEE Signal Processing Letters, 5(5), 111–114.

    Article  Google Scholar 

  • Golub, G. H., & van Loan, C. F. (2002). Matrix computations. New York: Wiley.

    MATH  Google Scholar 

  • Guerci, J. R., Goldstein, J. S., & Reed, I. S. (2000). Optimal and adaptive reduced-rank STAP. IEEE Transactions on Aerospace and Electronic Systems, 36(2), 647–663.

    Article  Google Scholar 

  • Haimovich, A. M., & Bar-Ness, Y. (1991). An eigenanalysis interference canceler. IEEE Transactions on Signal Processing, 39(1), 76–84.

    Article  Google Scholar 

  • Haykin, S. (2002). Adaptive filter theory (4th ed.). Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Hong, M., Madhow, U., & Verdu, S. (1995). Blind adaptive multiuser detection. IEEE Transactions on Information Theory, 41(4), 944–960.

    Article  MATH  Google Scholar 

  • Honig, M. L., & Xiao, W. (2001). Performance of reduced-rank linear interference suppression. IEEE Transactions on Information Theory, 47(5), 1928–1946.

    Article  MathSciNet  MATH  Google Scholar 

  • Honig, M. L., & Goldstein, J. S. (2002). Adaptive reduced-rank interference suppression based on the multistage Wiener filter. IEEE Transactions on Communications, 50(6), 986–994.

    Article  Google Scholar 

  • Johnson, D. H., & Dudgeon, D. E. (1993). Array signal processing: Concepts and techniques. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Kirsteins, I. P., & Ge, H. (2006, July). Performance analysis of Krylov space adaptive beamformers. In 4th IEEE workshop on sensor array and multichannel processing, Waltham, MA, pp. 16–20.

  • Li, J., & Stoica, P. (2006). Robust adaptive beamforming. Hoboken, NJ: Wiley.

    Google Scholar 

  • Liu, Y., & Lin, Z. (2006). On the applications of the frequency-response masking technique in array beamforming. Circuits, Systems and Signal Processing, 25(2), 201–224.

    Article  MathSciNet  MATH  Google Scholar 

  • Nagaraj, S., Gollamudi, S., Kapoor, S., & Huang, Y. F. (1999). BEACON: An adaptive set-membership filtering technique with sparse updates. IEEE Transactions on Signal Processing, 47(11), 2928–2941.

    Article  Google Scholar 

  • Pados, D. A., & Batalama, S. N. (1999). Joint space–time auxiliary vector filtering for DS/CDMA systems with antenna arrays. IEEE Transactions on Communications, 47(9), 1406–1415.

    Article  Google Scholar 

  • Pados, D. A., & Karystinos, G. N. (2001). An iterative algorithm for the computation of the MVDR filter. IEEE Transactions on Signal Processing, 49(2), 290–300.

    Article  Google Scholar 

  • Scharf, L. L., Chong, E. K. P., Zoltowski, M. D., Goldstein, J. S., & Reed, I. S. (2008). Subspace expansion and the equivalence of conjugate direction multistage Wiener filters. IEEE Transactions on Signal Processing, 56(10), 5013–5019.

    Article  MathSciNet  Google Scholar 

  • Somasundaram, S. D., Li, P., Parsons, N. H., & de Lamare, R. C. Reduced-dimension robust capon beamforming using Krylov-subspace techniques. IEEE Transactions on Aerospace and Electronic Systems (to appear).

  • Van Trees, H. L. (2004). Detection, estimation, and modulation theory, part IV, optimum array processing. New York: Wiley.

    Google Scholar 

  • Wang, L., & de Lamare, R. C. (2012). Set-membership constrained conjugate gradient adaptive algorithm for beamforming. IET Signal Processing, 6(8), 789–797.

    Article  MathSciNet  Google Scholar 

  • Wang, L., & de Lamare, R. C. (2013). Low-complexity constrained adaptive reduced-rank beamforming algorithms. IEEE Transactions on Aerospace and Electronic Systems, 49(4), 2114–2128.

    Article  Google Scholar 

  • Weippert, M. E., Hiemstra, J. D., Goldstein, J. S., & Zoltowski, M. D. (2002, August 4–6). Insights from the relationship between the multistage Wiener filter and the method of conjugate gradients. In Proceedings of the IEEE workshop on sensor array multichannel signal processing, pp. 388–392.

  • Werner, S., & Diniz, P. S. R. (2001). Set-membership affine projection algorithm. IEEE Signal Processing Letters, 8(8), 231–235.

    Article  Google Scholar 

  • Whitehead, J., & Takawira, F. (2005). Performance analysis of the linearly constrained constant modulus algorithm-based multiuser detector. IEEE Transactions on Signal Processing, 53(2), 643–653.

    Article  MathSciNet  Google Scholar 

  • Widrow, B., & Lehr, M. (1990). 30 Years of adaptive neural networks: Perceptron madaline and backpropagation. Proceedings of the IEEE, 78(9), 1415–1442.

  • Xu, Z., & Tsatsanis, M. K. (2001). Blind adaptive algorithms for minimum variance CDMA receivers. IEEE Transactions on Communications, 49(1), 180–194.

    Article  MATH  Google Scholar 

  • Xu, C., Feng, G., & Kwak, K. S. (2001). A modified constrained constant modulus approach to blind adaptive multiuser detection. IEEE Transactions on Communications, 49(9), 1642–1648.

    Article  MATH  Google Scholar 

  • Zeng, H., Tong, L., & Johnson, C. R. (1998). Relationships between the constant modulus and Wiener receivers. IEEE Transactions on Information Theory, 44(4), 1523–1538.

    Article  MathSciNet  MATH  Google Scholar 

  • Zou, Q., Yu, Z., & Lin, Z. (2004). A robust algorithm for linearly constrained adaptive beamforming. IEEE Signal Processing Letters, 11(1), 26–29.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Rodrigo C. de Lamare for his insightful suggestions which have helped to improve the quality of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijian Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China under Grants 61101103 and 61471319, the Fundamental Research Funds for the Central Universities, and the Zhejiang Provincial Natural Science Foundation of China under Grant LY14F010013.

Appendix: Derivation for (20) and (21)

Appendix: Derivation for (20) and (21)

In this appendix, we derive the expressions in (20) and (21). Note that each constraint set comprises of two parallel hyperstrips in the parameter space. Based on the constraint \(e^2(i)>\gamma ^2(i)\), we consider the following two cases for update: (1) \(|y(i)|>\sqrt{1+\gamma (i)}\) and (2) \(|y(i)|<\sqrt{1-\gamma (i)}\). Firstly, let us focus on the variable step-size \(\mu _{p}(i)\). We obtain \(\mu _{p}(i)\) for computing \(\mathbf {p}(i+1)\) by projecting \(\mathbf {p}(i)\) onto \(\mathcal {H}_{p}(i)\), i.e., the set of all \(\mathbf {p}\) that satisfy:

$$\begin{aligned} \sqrt{1-\gamma (i)}\le |\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {R}^{'}(i)\mathbf {p}^{*}|\le \sqrt{1+\gamma (i)}. \end{aligned}$$
(30)

For case 1) \(|\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {R}^{'}(i)\mathbf {p}^{*}(i)|>\sqrt{1+\gamma (i)}\), \(\mathbf {p}(i)\) is closer to the hyperplanes defined by

$$\begin{aligned} |\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {R}^{'}(i)\mathbf {p}^{*}|=\sqrt{1+\gamma (i)} \end{aligned}$$
(31)

than to the ones defined by

$$\begin{aligned} |\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {R}^{'}(i)\mathbf {p}^{*}|=\sqrt{1-\gamma (i)}. \end{aligned}$$
(32)

By substituting (18) into (31) and using the constraint \(\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {D}(\theta _{0})\mathbf {p}^{*}(i)=\nu \) we have

$$\begin{aligned}&\bigg |\underbrace{\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {R}^{'}(i)\mathbf {p}^{*}(i)}_{y(i)}-\mu _{p}(i)e(i)y(i)\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {R}^{'}(i)\bigg (\mathbf {I}-\frac{\mathbf {D}^{H}(\theta _{0})\mathbf {T}^{T}\bar{\mathbf {w}}(i)\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {D}(\theta _{0})}{\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {D}(\theta _{0})\mathbf {D}^{H}(\theta _{0})\mathbf {T}^{T}\bar{\mathbf {w}}(i)} \bigg ) \nonumber \\&\quad \times \,\mathbf {R}^{'H}(i)\mathbf {T}^{T}\bar{\mathbf {w}}(i)\bigg |=\sqrt{1+\gamma (i)}. \end{aligned}$$
(33)

By making an arrangement to (33) we have the following expression:

$$\begin{aligned} \mu _{p}(i)=\frac{\big (1-\frac{\sqrt{1+\gamma (i)}}{|y(i)|} \big )}{e(i)\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {R}^{'}(i)\left( \mathbf {I}-\frac{\mathbf {D}^{H}(\theta _{0})\mathbf {T}^{T}\bar{\mathbf {w}}(i)\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {D}(\theta _{0})}{\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {D}(\theta _{0})\mathbf {D}^{H}(\theta _{0})\mathbf {T}^{T}\bar{\mathbf {w}}(i)} \right) \mathbf {R}^{'H}(i)\mathbf {T}^{T}\bar{\mathbf {w}}(i)}. \end{aligned}$$
(34)

For case 2) \(|\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {R}^{'}(i)\mathbf {p}^{*}(i)|<\sqrt{1-\gamma (i)}\), \(\mathbf {p}(i)\) is closer to the hyperplanes defined by (32). By following the same approach we have:

$$\begin{aligned} \mu _{p}(i)=\frac{\big (1-\frac{\sqrt{1-\gamma (i)}}{|y(i)|} \big )}{e(i)\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {R}^{'}(i)\left( \mathbf {I}-\frac{\mathbf {D}^{H}(\theta _{0})\mathbf {T}^{T}\bar{\mathbf {w}}(i)\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {D}(\theta _{0})}{\bar{\mathbf {w}}^{H}(i)\mathbf {T}\mathbf {D}(\theta _{0})\mathbf {D}^{H}(\theta _{0})\mathbf {T}^{T}\bar{\mathbf {w}}(i)} \right) \mathbf {R}^{'H}(i)\mathbf {T}^{T}\bar{\mathbf {w}}(i)}. \end{aligned}$$
(35)

Therefore, the expressions for \(\mu _{p}(i)\) can be summarized as (20).

Then, we derive the expression for the variable step-size \(\mu _{w}(i)\). By employing (19) we have the following expression

$$\begin{aligned} \big |\bar{\mathbf {w}}^{H}(i+1)\bar{\mathbf {r}}(i)\big |= \bigg |\underbrace{\bar{\mathbf {w}}^{H}(i)\bar{\mathbf {r}}(i)}_{y(i)}-\mu _{w}(i)e(i)y(i)\bar{\mathbf {r}}^{H}(i)\varvec{\varOmega }(i)\bar{\mathbf {r}}(i)\bigg |. \end{aligned}$$
(36)

Similarly, by considering these two cases to update and making the arrangement to (36), we can obtain (21).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Qin, B. & Zhang, H. An improved adaptive constrained constant modulus reduced-rank algorithm with sparse updates for beamforming. Multidim Syst Sign Process 27, 321–340 (2016). https://doi.org/10.1007/s11045-014-0304-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-014-0304-5

Keywords

Navigation