Skip to main content
Log in

Blind multipath separation and combining technique for signal recovery

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

To achieve better mitigation of both cochannel interference (CCI) and intersymbol interference, a new structure using generalized estimation of multipath signals in conjunction with maximal-ratio combining diversity for wireless communications over multipath channels is introduced. In this structure, the signal replicas received from multiple paths are first independently produced by a bank of blind spatial filters and then constructively combined by a diversity combining receiver for final signal estimate. The new scheme can be applied on single antenna array or between multiple antenna subarrays. It will be shown, from both theoretical analysis and numerical experiments, that the new scheme provides both space diversity gains and path diversity gains while suppressing the CCIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agee, B., Schell, S., & Gardner, W. (1990). Spectral self-coherence restoral: a new approach to blind adaptive signal extraction using antenna arrays. Proceedings of the IEEE, 78, 753–767.

    Article  Google Scholar 

  • Anand, K., Mathew, G., & Reddy, V. U. (1995). Blind separation of multiple cochannel BPSK signals arriving at an antenna array. IEEE Signal Processing Letters, 2, 176–178.

    Article  Google Scholar 

  • Belouchrani, A., Meraim, K., Cardoso, J.-F., & Moulines, E. (1997). A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing, 45, 434–444.

    Article  Google Scholar 

  • Cardoso, J.-F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals. In Proceedings-F of the IEE, 140(6), 362–370.

  • Ertel, R. B., Cardieri, P., Sowerby, K. W., Rappaport, T. S., & Reed, J. H. (1998). Overview of spatial channel models for antenna array communication systems. IEEE Personal Communications, 5(1), 10–22.

    Article  Google Scholar 

  • Fabrizio, G., & Farina, A. (2011). Exploiting multipath for blind source separation with sensor arrays, In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 2536–2539).

  • Fabrizio, G., & Farina, A. (2011). An adaptive filtering algorithm for blind waveform estimation in diffuse multipath channels. IET Radar Sonar and Navigation, 5(3), 322–330.

    Article  Google Scholar 

  • Godara, L. C. (1997). Application of antenna arrays to mobile communications. II. Beamforming and direction-of-arrival considerations. Proceedings of the IEEE, 85(8), 1195–1245.

    Article  Google Scholar 

  • Hayashi, K., & Hara, S. (2001). A new spatio-temporal equalization method based on estimated channel response. IEEE Transactions on Vehicular Technology, 50(5), 1250–1259.

    Article  Google Scholar 

  • Hua, Y., & Wax, M. (1996). Strict identification of multiple FIR channels driven by an unknown arbitrary sequence. IEEE Transactions on Signal Processing, 44(3), 756–759.

    Article  Google Scholar 

  • Laakso, T. I., Välimäki, V., Karjalainen, M., & Laine, U. K. (1996). Splitting the unit delay-tools for fractional delay filter design. IEEE Signal Processing Magazine, 13(1), 30–60.

    Article  Google Scholar 

  • Lee, Y., & Wu, W. R. (2008). Adaptive decision feedback space-time equalization with generalized sidelobe cancellation. IEEE Transactions on Vehicular Technology, 57(5), 2894–2906.

    Article  MathSciNet  Google Scholar 

  • Leng, S., Ser, W., & Ko, C. C. (2010). Adaptive beamformer derived from a constrained null steering design. Signal Processing, 90, 1530–1541.

    Article  MATH  Google Scholar 

  • Li, J., Stoica, P., & Wang, Z. (2003). On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processsing, 51(7), 1702–1714.

    Article  Google Scholar 

  • Monzingo, R., & Miller, T. (1980). Introduction to adaptive arrays. New York: Wiley and Sons.

    Google Scholar 

  • Papadias, C., & Paulraj, A. (1997). A constant modulus algorithm for multiuser signal separation in presence of delay spread using antenna arrays. IEEE Signal Processing Letters, 4, 178–181.

    Article  Google Scholar 

  • Paulraj, A., & Papadias, C. (1997). Space-time processing for wireless communications. IEEE Signal Processing Magazine, 14, 49–83.

    Article  Google Scholar 

  • Proakis, J. G. (1995). Digital communications (3rd ed.). New York: McGraw Hill.

    MATH  Google Scholar 

  • Shan, T. J., & Kailath, T. (1985). Adaptive beamforming for coherent signals and interferences. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP–33(3), 527–536.

    Article  Google Scholar 

  • Tsoulos, G. V. (Ed.). (2001). Adaptive antennas for wireless communications. Piscataway, NJ: IEEE Press.

    Google Scholar 

  • Van der Veen, A.-J., & Paulraj, A. (1996). An analytical constant modulus algorithm. IEEE Transactions on Signal Processcessing, 44, 1136–1155.

    Article  Google Scholar 

  • Wu, Q., & Wong, K. M. (1996). Blind adaptive beamforming for cyclostationary signals. IEEE Transactions on Signal Processing, 44(11), 2757–2767.

    Article  Google Scholar 

  • Yellin, D., & Porat, B. (1993). Blind identification of FIR systems excited by discrete-alphabet inputs. IEEE Transactions on Signal Processing, 41, 1331–1339.

    Article  MATH  Google Scholar 

  • Yen, R. Y. (2009). Unbiased MMSE vs. biased MMSE equalizers. Tamkang Journal of Science and Engineering, 12(1), 45–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Leng.

Appendix

Appendix

Here we look at the case when the reference output contains the unresolved path-1 and 2 and we have

$$\begin{aligned} z(k)=\beta _{1}s(k-\ell _{1})e^{j2\pi \nu _{1}k}+\beta _{2}s(k-\ell _{2}) e^{j2\pi \nu _{2}k} \end{aligned}$$
(47)

and

$$\begin{aligned} y'(k)&= \beta _{3}s(k-\ell _{3}-\ell )e^{j2\pi (\nu _{3}+\nu )k}\nonumber \\&= \beta _{3}s(k-\ell _{3}-(\ell _{1}-\ell _{3}))e^{j2\pi (\nu _{3}+(\nu _{1} -\nu _{3}))k}\nonumber \\&= \beta _{3}s(k-\ell _{1})e^{j2\pi \nu _{1}k} \end{aligned}$$
(48)

Hence,

$$\begin{aligned} \epsilon&= \mathbf {E}\left\{ \Vert z(k)-y'(k)\Vert ^{2}\right\} \nonumber \\&= \mathbf {E}\left\{ \Vert z(k)\Vert ^{2}+\Vert y'(k)\Vert ^{2}-z^{*}(k)y'(k)-z(k) y'^{*}(k)\right\} \nonumber \\&= \beta _{1}^{2}\sigma _{s}^{2}+\beta _{2}^{2}\sigma _{s}^{2}+\beta _{3} ^{2}\sigma _{s}^{2}-\beta _{1}^{*}\beta _{3}\sigma _{s}^{2}-\beta _{1} \beta _{3}^{*}\sigma _{s}^{2}\nonumber \\&= \left[ (\beta _{1}-\beta _{3})^{2}+\beta _{2}^{2}\right] \sigma _{s}^{2} \nonumber \\&\mathrm s.t. \beta _{1}=f(\mathrm const ), \beta _{2}=c\beta _{1} \end{aligned}$$
(49)

where \(\mathbf {E}\) denotes expectation, \(\sigma _{s}^{2}\) is the signal power. The constraints in (49) can be interpreted as following: the complex scale factor \(\beta _{1}\) is some constant value and \(\beta _{2}\) is a scaled value of \(\beta _{1}\) with some constant scalar \(c\). Note here that (49) is derived with the assumption that the signal \(s(k)\) is i.i.d.. Therefore, from (49), \(\epsilon \) can be minimized when

$$\begin{aligned} \beta _{1}=\beta _{3} \end{aligned}$$
(50)

Note here that in the presence of additive noise that is i.i.d., the above analysis and conclusion are still valid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, S., Ser, W., Ng, W.T. et al. Blind multipath separation and combining technique for signal recovery. Multidim Syst Sign Process 27, 383–410 (2016). https://doi.org/10.1007/s11045-014-0307-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-014-0307-2

Keywords

Navigation