Skip to main content
Log in

A back-projection autofocus algorithm based on flight trajectory optimization for synthetic aperture radar imaging

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new autofocus algorithm is presented for back-projection (BP) image formation of synthetic aperture radar (SAR) imaging. The approach is based on maximizing a cost function obtained by prominent points in different sub-apertures of constructed SAR image by varying the flight trajectory parameters. While image-quality-based autofocus approach together with BP algorithm can be computationally intensive, we use approximations that allow optimal corrections to be derived. The approach is applicable for focusing different signal processing algorithms by obtaining modified flight trajectory parameters. Different examples demonstrate the effectiveness of the new autofocus approach applied to the frequency modulated continuous wave mode SAR dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ash, J. N. (2012). An autofocus method for backprojection imagery in synthetic aperture radar. IEEE Geoscience and Remote Sensing Letters, 9(1), 104–108.

    Article  Google Scholar 

  • Carrara, W. G., Goodman, R. S., & Majewski, R. M. (1995). Spotlight synthetic aperture radar signal processing algorithms. Boston, MA: Artech House.

    MATH  Google Scholar 

  • Cumming, G., & Wong, F. H. (2005). Digital processing of synthetic aperture radar data algorithms and implementation. Norwood, MA: Artech House.

    Google Scholar 

  • Cumming, G., Neo, Y. L., & Wong, F. (2003). Interpretations of the Omega-K algorithm and comparisons with other algorithms. In Proceedings of the IEEE international geoscience and remote sensing symposium (Vol. 3, pp. 1455–1458).

  • Edrich, M. (2004). Design overview and flight test results of the miniaturised SAR sensor MISAR. In Proceedings of the first European radar conference (pp. 205–208).

  • Edwards, M., Madsen, D., Stringham, C., Margulis, A., Wicks, B., & Long, D. (2008). MicroASAR: A small, robust LFM-CW SAR for operation on UAVs and small aircraft. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (Vol. 5, pp. 514–517).

  • Edwards, M. C. (2009). Design of a continuous-wave synthetic aperture radar system with analog dechirp. Master’s thesis, Brigham Young University.

  • Franceschetti, G., & Lanari, R. (1999). Synthetic aperture radar processing. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Frey, O., Magnard, C., Rüegg, M., & Meier, E. (2009). Focusing of airborne synthetic aperture radar data from highly nonlinear flight tracks. IEEE Transactions on Geoscience and Remote Sensing, 47(6), 1844–1858.

    Article  Google Scholar 

  • Gilmore, C. G. (2004). A comparison of imaging methods using GPR for landmine detection and a preliminary investigation into the SEM for identification of buried objects. Master thesis, University of Manitoba Winnipeg, Manitoba, Canada.

  • Goldberg, E. (1989). Genetic algorithms in search. Optimization & machine learning. Reading: Addison-Wesley.

    MATH  Google Scholar 

  • Hellsten, H., Dammert, P., & Ahlander, A. (2010). Autofocus in fast factorized backprojection for processing of SAR images when geometry parameters are unknown. In IEEE radar conference (pp. 603–608).

  • Horemuz, M., & Andersson, J. V. (2006). Polynomial interpolation of GPS satellite coordinates. GPS Solutions, 10, 67–72.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE conference on systems, man, and cybernetics, Piscataway, NJ (pp. 4104–4109).

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Krishnan, S. (2000). Modeling and simulation analysis of an FMCW radar for measuring snow thickness. Master thesis, University of Madras.

  • Liu, M., Li, Ch., & Shi, X. (2011). A back-projection fast autofocus algorithm based on minimum entropy for SAR imaging. In 3rd international Asia-Pacific conference on synthetic aperture radar (APSAR) (pp. 1–4).

  • Meta, A., de-Wit, J., & Hoogeboom, P. (2004). Development of a high resolution airborne millimeter wave FM-CW SAR. In Proceedings of the first European radar conference (pp. 209–212).

  • Meta, A., Hakkaart, P., Zwan, F., Hoogeboom, P., & Ligthart, L. (2006). First demonstration of an X-band airborne FMCW SAR. In Proceedings of the 6th European conference on synthetic aperture radar.

  • Meta, A., Hoogeboom, P., & Ligthart, L. P. (2007). Signal processing for FMCW SAR. IEEE Transactions on Geoscience and Remote Sensing, 45(11), 3519–3532.

    Article  Google Scholar 

  • Oliver, C., & Quegan, S. (1999). Understanding synthetic aperture radar images. Norwood, MA: Artech House.

    Google Scholar 

  • Partida, J. T. G., Gonzalez, P. A., Garcia, M. B., & Naranjo, B. P. D. (2008). SAR system for UAV operation with motion error compensation beyond the resolution cell. Sensors, 8(5), 3384–3405.

    Article  Google Scholar 

  • Rao, S. (1984). Optimization: Theory and applications. New York: Wiley.

    MATH  Google Scholar 

  • Sandia. (2006). What is synthetic aperture radar. Internet Source, February. Sandia http://www.sandia.gov/RADAR/whatis.html

  • Schenewerk, M. (2003). A brief review of basic GPS orbit interpolation strategies. GPS Solutions, 6, 265–267.

    Article  Google Scholar 

  • Stringham, C., & Long, D.G. (2011). Improved processing of the CASIE SAR data. In IEEE International Geoscience and Remote Sensing Symposium.

  • Wahl, D. E., Eichel, P. H., Ghiglia, D. C., & Jakowatz, C. V, Jr. (1994). Phase gradient autofocus—A robust tool for high resolution phase correction. IEEE Transactions on Aerospace and Electronic Systems, 30(3), 827–835.

    Article  Google Scholar 

  • Wang, W., Peng, Q., & Cai, J. (2009). Waveform-diversity-based millimeter wave UAV SAR remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 691–700.

    Article  Google Scholar 

  • Zaugg, E., Hudson, D., & Long, D. (2006). The BYU uSAR: A small, student-built SARfor UAV operation. In Proceedings of the IEEE international geoscience and remote sensing symposium (pp. 411–414).

Download references

Acknowledgments

David G. Long at Brigham Young University (BYU) is gratefully acknowledged for the CASIE-09 data. The valuable comments of the anonymous reviewers obviously contributed to the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Faez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedi, J., Faez, K. A back-projection autofocus algorithm based on flight trajectory optimization for synthetic aperture radar imaging. Multidim Syst Sign Process 27, 411–431 (2016). https://doi.org/10.1007/s11045-014-0308-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-014-0308-1

Keywords

Navigation