Skip to main content
Log in

Dynamic texture recognition based on completed volume local binary pattern

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Dynamic textures are the sequences of images of moving scenes having some stationary properties in time; these include sea-waves, smoke, foliage, whirlwind etc. In recent years, dynamic texture description and recognition has attracted growing attention. This paper presents a more effective completed modeling of volume local binary pattern (VLBP) to recognize dynamic textures. Due to the dependency on local binary pattern (LBP), traditional VLBP also suffers with noise sensitivity and may give the same LBP code to different structural patterns; thus limiting the discriminating power of a texture descriptor. To represent temporal textures we have used VLBP. Local region of a volume is represented using its center frame and local sign magnitude difference with the circularly symmetric neighborhood. We have proposed a new contrast operator to complement the sign information of the temporal texture. To add additional discriminative information, volume center pixel information is also fused with the sign magnitude difference of texture. By combining these features into hybrid distributions we get higher classification accuracy for rotation invariant texture classification. Experimental results on UCLA and Dyntex databases show that the proposed approach provides better performance in comparison to the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bouthemy, P., & Fablet, R. (1998). “Motion characterization from temporal co-occurrences of local motion-based measures for video indexing”. In Proceedings of the International Conference on Pattern Recognition (Vol. 1, pp. 905–908). Brisbane, Australia.

  • Chan, A. B., & Vasconcelos, N. (2005). “Probabilistic Kernels for the Classification of Auto-regressive Visual Processes”. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Vol. 1, pp. 846–851).

  • Chan, A., Coviello, E., & Lanckriet, G. (Jun. 2010). “Clustering dynamic textures with the hierarchical EM algorithm”. In Proceedings of the IEEE Conference Computer Vision Pattern Recognition (pp. 2022–2029). San Francisco, CA.

  • Cheng, G., Guo, L., Zhao, T., Han, J., & Fang, J. (2013). Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA. International Journal of Remote Sensing, 34(1), 45–59.

    Article  Google Scholar 

  • Chetverikov, D., & Péteri, R. (2005). “A brief survey of dynamic texture description and recognition”. In Proceedings of 4th International Conference on Computer Recognition Systems (pp. 17–26). Poland.

  • Derpanis, K. G., & Wildes, R. P. (2010). “Dynamic texture recognition based on distributions of spacetime oriented structure” In IEEE Conference on Computer Vision and Pattern Recognition, CVPR (pp. 191–198).

  • Doretto, G., Chiuso, A., Soatto, S., & Wu, Y. N. (2003). Dynamic textures. International Journal of Computer Vision, 51(2), 91–109.

    Article  MATH  Google Scholar 

  • Fazekas, S., & Chetverikov, D. (2005). “Normal versus complete flow in dynamic texture recognition: a comparative study”. In Texture 2005, 4th International Workshop on Texture Analysis and Synthesis (pp. 37–42). Beijing.

  • Fujita, K., & Nayar, S. K. (2003). “Recognition of dynamic textures using impulse responses of state variables”. In Proceedings of Third International Workshop on Texture Analysis and Synthesis (Texture 2003) (pp. 31–36). Nice, France.

  • Ghanem, B., & Ahuja, N. (2010). “Maximum margin distance learning for dynamic texture recognition”. In European Conference on Computer Vision, ECCV (pp. 223–236).

  • Guo, Z. H., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 19(6), 1657–1663.

    Article  MathSciNet  Google Scholar 

  • Heikkilä, M., Pietikäinen, M., & Schmid, C. (2009). Description of interest regions with local binary patterns. Pattern Recognition, 42(3), 425–436.

    Article  MATH  Google Scholar 

  • Liao, S., Law, M. W. K., & Chung, A. C. S. (2009). Dominant local binary patterns for texture classification. IEEE Transaction on Image Processing, 18(5), 1107–1118.

    Article  MathSciNet  Google Scholar 

  • Lowe, D. (2004). Distinctive image features from scale invariant key points. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Manjunathi, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. IEEE Transactions Pattern Analysis and Machine Intelligence, 18(8), 837–842.

    Article  Google Scholar 

  • Nanni, L., Brahnam, S., & Lumini, A. (2012). A simple method for improving local binary patterns by considering non-uniform patterns. Pattern Recognition, 45(10), 3844–3852.

    Article  Google Scholar 

  • Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 29, 51–59.

    Article  Google Scholar 

  • Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray scale and rotation invariant texture analysis with local binary patterns. IEEE Transactions Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    Article  MATH  Google Scholar 

  • Peh, C. H., & Cheong, L.-F. (2002). Synergizing spatial and temporal texture. IEEE Transactions on Image Processing, 11, 1179–1191.

    Article  MathSciNet  Google Scholar 

  • Péteri, R., & Chetverikov, D. (2004). “Qualitative characterization of dynamic textures for video retrieval”. In Proceedings of International Conference on Computer Vision and Graphics (ICCVG 2004) (vol. 32, pp. 33–38). Poland.

  • Péteri, R., & Chetverikov, D. (2005). “Dynamic texture recognition using normal flow and texture regularity”. In Proceedings of Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2005) (pp. 223–230). Estoril, Portugal.

  • Péteri, R., Fazekas, S., & Huiskes, M. J. (2010). DynTex: A comprehensive database of dynamic textures. Pattern Recognition Letters, 31(12), 1627–1632.

    Article  Google Scholar 

  • Pietikäinen, M., Ojala, T., & Xu, Z. (2000). Rotation-invariant texture classification using feature distributions. Pattern Recognition, 33(1), 43–52.

    Article  Google Scholar 

  • Pietikäinen, M., Hadid, A., Zhao, G., & Ahonen, T. (2011). Computer vision using local binary patterns (Vol. 40). Berlin: Springer.

    Google Scholar 

  • Ravichandran, A., Chaudhry, R., & Vidal, R. (2009). “View-invariant dynamic texture recognition using a bag of dynamical systems”. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 1651–1657).

  • Ren, J., Jiang, X., & Yuan, J. (2013). “Dynamic texture recognition using enhanced LBP features”. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2400–2404).

  • Saisan, P., Doretto, G., Wu, Y. N., & Soatto, S. (2001). Dynamic texture recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition (Vol. 2, pp. 58–63).

  • Shrivastava, N., & Tyagi, V. (2014). An effective scheme for image texture classification based on binary local structure pattern. Visual Computer, 30(11), 1223–1232. doi:10.1007/s00371-013-0887-0.

    Article  Google Scholar 

  • Smith, J. R., Lin, C.-Y., & Naphade, M. (2002). “Video texture indexing using spatiotemporal wavelets”. In IEEE International Conference on Image Processing (ICIP 2002) (Vol. 2, pp. 437–440).

  • Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.

    Article  MathSciNet  Google Scholar 

  • Xu, Y., Quan, Y., Ling, H., & Ji, H. (2011). “Dynamic texture classification using dynamic fractal analysis”. In IEEE International Conference on Computer Vision (ICCV) (pp. 1219–1226).

  • Zhao, G., & Pietikäinen, M. (2007). “Dynamic texture recognition using volume local binary patterns”. In Proceedings of Workshop on Dynamical Vision WDV 2005/2006, LNCS 4358 (pp. 165–177).

  • Zhao, G., & Pietikäinen, M. (2007). Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions Pattern Analysis and Machine Intelligence, 29(6), 915–928.

    Article  Google Scholar 

  • Zhao, G., Ahonen, T., Matas, J., & Pietikäinen, M. (2012). Rotation-invariant image and video description with local binary pattern features. IEEE Transactions on Image Processing, 21(4), 1465–1467.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, D., Tyagi, V. Dynamic texture recognition based on completed volume local binary pattern. Multidim Syst Sign Process 27, 563–575 (2016). https://doi.org/10.1007/s11045-015-0319-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0319-6

Keywords

Navigation