Skip to main content
Log in

A new direction-of-arrival estimation method exploiting signal structure information

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

A new method is proposed to estimate the direction-of-arrival (DOA) based on uniform linear array sampling and named as sparsity and temporal correlation exploiting (SaTC-E). By exploiting the structure information of source signals, including spatial sparsity and temporal correlation of sources, SaTC-E accomplishes DOA estimation with superior performance via block sparse bayesian learning methodology and grid refined strategy. SaTC-E is applicable into time-varying manifold scenario, such as wideband sources, time-varying array, provided that the array manifold matrix is determinable. It has improved performance with some other merits, including superior resolution, requirement for a few snapshots, no knowledge of source number, and applicability to spatially and temporally corrected sources. Real data tests and numerical simulations are carried out to demonstrate the advantages of SaTC-E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baraniuk, R. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–124.

    Article  Google Scholar 

  • Candes, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  MATH  MathSciNet  Google Scholar 

  • Carlin, M., Rocca, P., Oliveri, G., et al. (2013). Directions-of-arrival estimation through bayesian compressive sensing strategies. IEEE Transactions on Antennas and Propagation, 61(7), 3828–3838.

    Article  MathSciNet  Google Scholar 

  • Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39(1), 1–38.

    MATH  MathSciNet  Google Scholar 

  • Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MATH  MathSciNet  Google Scholar 

  • Du, X. P., & Cheng, L. Z. (2014). Three stochastic measurement schemes for direction-of-arrival estimation using compressed sensing method. Multidimensional Systems and Signal Processing, 25(4), 621–636.

    Article  MATH  Google Scholar 

  • Eldar, Y., & Mishali, M. (2009). Robust recovery of signals from a structured union of subspaces. IEEE Transactions on Information Theory, 55(11), 5302–5316.

    Article  MathSciNet  Google Scholar 

  • Guo, X. S., Wan, Qun, Chang, C. Q., & Lam, E. Y. (2010). Source localization using a sparse representation framework to achieve superresolution. Multidimensional Systems and Signal Processing, 21(4), 391–402.

    Article  MATH  MathSciNet  Google Scholar 

  • Hyder, M., & Mahata, K. (2010). Direction-of-arrival estimation using a mixed \(l_{2,0}\) norm approximation. IEEE Transactions on Signal Processing, 58(9), 4646–4655.

    Article  MathSciNet  Google Scholar 

  • Kim, J., Lee, O., & Ye, J. (2012). Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing. IEEE Transactions on Information Theory, 58(1), 278–301.

    Article  MathSciNet  Google Scholar 

  • Liu, Z., Huang, Z., & Zhou, Y. (2012). An efficient maximum likelihood method for direction-of-arrival estimation via sparse bayesian learning. IEEE Transactions on Wireless Communications, 11(10), 3607–3617.

    Google Scholar 

  • Malioutov, D., Cetin, M., & Willsky, A. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.

    Article  MathSciNet  Google Scholar 

  • Northardt, E., Bilik, I., & Abramovich, Y. (2013). Spatial compressive sensing for direciton-of-arrival estimation with bias mitigation via expected likelihood. IEEE Transactions on Signal Processing, 61(5), 1183–1195.

    Article  MathSciNet  Google Scholar 

  • Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  MathSciNet  Google Scholar 

  • Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood and Cramer–Rao bound. IEEE Transactions on Acoustics Speech and Signal Processing, 37(5), 720–741.

    Article  MATH  MathSciNet  Google Scholar 

  • Tipping, M. (2001). Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211–244.

    MATH  MathSciNet  Google Scholar 

  • Valaee, S., & Kabal, P. (1995). Wideband array processing using a two-side correlation transformation. IEEE Transactions on Signal Processing, 43(1), 160–172.

    Article  Google Scholar 

  • Wan, J., Zhang, Z., Yan, J., et al. (2012). Sparse bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer’s disease. In Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR) (pp. 940–947), Providence, Rhode Island, June 2012.

  • Wang, H., & Kaveh, M. (1985). Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources. IEEE Transactions on Acoustics Speech and Signal Processing, 33(4), 823–831.

    Article  Google Scholar 

  • Wipf, D., Rao, B., & Nagarajan, S. (2011). Latent variable Bayesian models for promoting sparsity. IEEE Transactions on Information Theory, 57(9), 6236–6255.

    Article  MathSciNet  Google Scholar 

  • Zhang, Z., Jung, T., Makeig, S., et al. (2013). Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware. IEEE Transactions on Biomedical Engineering, 60(1), 221–224.

    Article  Google Scholar 

  • Zhang, Z., Jung, T., Makeig, S., et al. (2013). Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learning. IEEE Transactions on Biomedical Engineering, 60(2), 300–309.

    Article  Google Scholar 

  • Zhang, Z., & Rao, B. (2011). Sparse signal recovery with temporally correlated source vectors using sparse bayesian learning. IEEE Journal of Selected Topics in Signal Processing, 5(5), 912–926.

    Article  Google Scholar 

  • Zhang, Z., & Rao, B. (2013). Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Transactions on Signal Processing, 61(8), 2009–2015.

    Article  Google Scholar 

  • Zhu, W., & Chen, B. X. (2015). Novel methods of DOA estimation based on compressed sensing. Multidimensional Systems and Signal Processing, 26(1), 113–123.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Lin.

Additional information

This research was supported by the National Natural Science Foundation of China under Grants (Nos. 61205190, 61201332 and 61471369) and Basic Research Plan of NUDT (No. JC13-02-03).

Appendices

Appendix 1

The detail for the derivatives (20) is presented as follows.

Let \(\mathbf {W}= {{\varvec{\Sigma }}_{-k}}+{{\tilde{\gamma }}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \otimes \mathbf {B},\) and the derivatives are expressed as

$$\begin{aligned} \frac{\partial L\left( {{{\tilde{\gamma }}}_{k}},{{{\tilde{\vartheta }}}_{k}} \right) }{\partial {{{\tilde{\gamma }}}_{k}}}= & {} \frac{\partial \ln \left| \mathbf {W} \right| }{\partial {{{\tilde{\gamma }}}_{k}}}+\frac{\partial {{{\mathbf {z}}}^{H}}{{\mathbf {W}}^{-1}}{\mathbf {z}}}{\partial {{{\tilde{\gamma }}}_{k}}}\\= & {} \left\langle \frac{\partial \ln \left| \mathbf {W} \right| }{\partial \mathbf {W}},\frac{\partial \mathbf {W}}{\partial {{{\tilde{\gamma }}}_{k}}} \right\rangle +\left\langle \frac{\partial {{{\mathbf {z}}}^{H}}{{\mathbf {W}}^{-1}}{\mathbf {z}}}{\partial \mathbf {W}},\frac{\partial \mathbf {W}}{\partial {{{\tilde{\gamma }}}_{k}}} \right\rangle ,\\ \frac{\partial L\left( {{{\tilde{\gamma }}}_{k}},{{{\tilde{\vartheta }}}_{k}} \right) }{\partial {{{\tilde{\vartheta }}}_{k}}}= & {} \frac{\partial \ln \left| \mathbf {W} \right| }{\partial {{{\tilde{\vartheta }}}_{k}}}+\frac{\partial {{{\mathbf {z}}}^{H}}{{\mathbf {W}}^{-1}}{\mathbf {z}}}{\partial {{{\tilde{\vartheta }}}_{k}}} \\= & {} \left\langle \frac{\partial \ln \left| \mathbf {W} \right| }{\partial \mathbf {W}},\frac{\partial \mathbf {W}}{\partial {{{\tilde{\vartheta }}}_{k}}} \right\rangle +\left\langle \frac{\partial {{{\mathbf {z}}}^{H}}{{\mathbf {W}}^{-1}}{\mathbf {z}}}{\partial \mathbf {W}},\frac{\partial \mathbf {W}}{\partial {{{\tilde{\vartheta }}}_{k}}} \right\rangle . \end{aligned}$$

Employing the matrix differential formulas that

$$\begin{aligned} \frac{\partial \ln \left| \mathbf {W} \right| }{\partial \mathbf {W}}= & {} {{\mathbf {W}}^{-1}}, \\ \frac{\partial \mathbf {W}}{\partial {{{\tilde{\gamma }}}_{k}}}= & {} {\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \otimes \mathbf {B}, \\ \frac{\partial \mathbf {W}}{\partial {{{\tilde{\vartheta }}}_{k}}}= & {} {{\tilde{\gamma }}_{k}}\left( {\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{\mathbf {d}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) +\mathbf {d}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) \otimes \mathbf {B}, \\ \frac{\partial {{{\mathbf {z}}}^{H}}{{\mathbf {W}}^{-1}}{\mathbf {z}}}{\partial \mathbf {W}}= & {} -{{\mathbf {W}}^{-1}}{\mathbf {z}}{{{\mathbf {z}}}^{H}} {{\mathbf {W}}^{-1}}, \end{aligned}$$

where \(\mathbf {W}\) is a conjugated symmetrical matrix, and \(\mathbf {d}\left( {{{\tilde{\vartheta }}}_{k}}\right) ={\partial {\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}}\right) }/{\partial {{{\tilde{\vartheta }}}_{k}}}\;\), and let \(\mathbf {V}={{\mathbf {W}}^{-1}}-{{\mathbf {W}}^{-1}}{\mathbf {z}} {{{\mathbf {z}}}^{H}}{{\mathbf {W}}^{-1}}\), we have

$$\begin{aligned} \frac{\partial L\left( {{{\tilde{\gamma }}}_{k}},{{{\tilde{\vartheta }}}_{k}} \right) }{\partial {{{\tilde{\gamma }}}_{k}}}= & {} \left\langle \mathbf {V},{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \otimes \mathbf {B} \right\rangle \\= & {} {\text {tr}}\left\{ \left( \mathbf {V} \right) \left[ {\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \otimes \mathbf {B} \right] \right\} , \\ \frac{\partial L\left( {{{\tilde{\gamma }}}_{k}},{{{\tilde{\vartheta }}}_{k}} \right) }{\partial {{{\tilde{\vartheta }}}_{k}}}= & {} {{{\tilde{\gamma }}}_{k}}\left\langle \mathbf {V},\left( {\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{\mathbf {d}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) +\mathbf {d}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) \otimes \mathbf {B} \right\rangle \\= & {} {{{\tilde{\gamma }}}_{k}}{\text {tr}}\left\{ \mathbf {V}\left[ \left( {\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{\mathbf {d}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) \otimes \mathbf {B} \right] \right\} \\&+ \, {{{\tilde{\gamma }}}_{k}}{\text {tr}}\left\{ \mathbf {V}\left[ \left( \mathbf {d}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) \otimes \mathbf {B} \right] \right\} . \end{aligned}$$

In terms of the singular value decomposition (SVD), \(\mathbf {B}\) can be rewritten as

$$\begin{aligned} \mathbf {B}=\sum \limits _{i=1}^{{{r}_{\mathbf {B}}}} {\mathbf {u}_{i}^{\mathbf {B}}{{\left( \mathbf {u}_{i}^{\mathbf {B}} \right) }^{H}}} \end{aligned}$$

with \({r}_{\mathbf {B}}={\text {rank}}\left( \mathbf {B} \right) \) and \(\mathbf {u}_{i}^\mathbf {B}\) being the product of the ith singular value and the associated eigenvector of \(\mathbf {B}\), So that

$$\begin{aligned} \quad \frac{\partial L\left( {{{\tilde{\gamma }}}_{k}},{{{\tilde{\vartheta }}}_{k}} \right) }{\partial {{{\tilde{\gamma }}}_{k}}}= & {} {\text {tr}}\left\{ \mathbf {V}\left[ {\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \otimes \sum \limits _{i=1}^{{{r}_{\mathbf {B}}}} {\mathbf {u}_{i}^{\mathbf {B}}{{\left( \mathbf {u}_{i}^{\mathbf {B}} \right) }^{H}}} \right] \right\} \\= & {} \sum \limits _{i=1}^{{{r}_{\mathbf {B}}}}{{\text {tr}}\left\{ \mathbf {V}\left[ \left( {\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \otimes \mathbf {u}_{i}^{\mathbf {B}} \right) \left( {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \otimes {{\left( \mathbf {u}_{i}^{\mathbf {B}} \right) }^{H}} \right) \right] \right\} }\\= & {} \sum \limits _{i=1}^{{{r}_{\mathbf {B}}}}{{{\left[ {\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \otimes \mathbf {u}_{i}^{\mathbf {B}} \right] }^{H}}\mathbf {V}\left[ {\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \otimes \mathbf {u}_{i}^{\mathbf {B}} \right] }. \end{aligned}$$

The derivation is accomplished.

Appendix 2

Proof of Proposition 2

when \(\mathbf {B}={{{\mathbf {I}}}_{L}}\), we get \({{\varvec{\Sigma }}_{-k}}={{{\breve{{\varvec{\Sigma }} }}}_{-k}}\otimes {{{\mathbf {I}}}_{L}}\), and then \(L\left( {{{\tilde{\gamma }}}_{k}},{{{\tilde{\vartheta }}}_{k}} \right) \) can be rewritten as

$$\begin{aligned} L\left( {{{\tilde{\gamma }}}_{k}},{{{\tilde{\vartheta }}}_{k}} \right)= & {} \log \left| \left( {{{{\breve{{\varvec{\Sigma }} }}}}_{-k}}+{{{\tilde{\gamma }}}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) \otimes {{{\mathbf {I}}}_{L}} \right| \\&+\,{{{\mathbf {z}}}^{H}}{{\left( \left( {{{{\breve{{\varvec{\Sigma }} }}}}_{-k}}+{{{\tilde{\gamma }}}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) \otimes {{{\mathbf {I}}}_{L}} \right) }^{-1}}{\mathbf {z}}, \end{aligned}$$

and the first term of \(L\left( {{{\tilde{\gamma }}}_{k}},{{{\tilde{\vartheta }}}_{k}} \right) \) equals to the first term of \(\breve{L}\left( {{{\tilde{\gamma }}}_{k}},{{{\tilde{\vartheta }}}_{k}} \right) \), because

$$\begin{aligned}&\log \left| \left( {{{{\breve{{\varvec{\Sigma }} }}}}_{-k}}+{{{\tilde{\gamma }}}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) \otimes {{{\mathbf {I}}}_{L}} \right| \\&\quad = \log \left( {{\left| {{{{\breve{{\varvec{\Sigma }} }}}}_{-k}}+{{{\tilde{\gamma }}}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right| }^{L}}{{\left| {{{\mathbf {I}}}_{L}} \right| }^{M}} \right) \\&\quad =\log {{\left| {{{{\breve{{\varvec{\Sigma }} }}}}_{-k}}+{{{\tilde{\gamma }}}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right| }^{L}} \\&\quad = L\log \left| {{{{\breve{{\varvec{\Sigma }} }}}}_{-k}}+{{{\tilde{\gamma }}}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right| . \end{aligned}$$

Let \(\mathbf {Q}= {{\left( {{{{\breve{{\varvec{\Sigma }} }}}}_{-k}}+{{{\tilde{\gamma }}}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) }^{-1}}\), and write the array output matrix \({\mathbf {Y}}\) as the form of

$$\begin{aligned} {\mathbf {Y}}=\left[ \begin{array}{c@{~}l} {{{\mathbf {y}}}_{1}} \\ {{{\mathbf {y}}}_{2}} \\ \vdots \\ {{{\mathbf {y}}}_{M}} \\ \end{array} \right] \in {{{\mathbb {C}}}^{M\times L}},\, {{{\mathbf {y}}}_{i}}=\left[ {{y}_{i1}} \, {{y}_{i2}} \, \ldots \, {{y}_{iL}} \right] \in {{{\mathbb {C}}}^{1\times L}}, \end{aligned}$$

so that \({{{\mathbf {z}}}^{T}}=\left[ {{{\mathbf {y}}}_{1}} \, {{{\mathbf {y}}}_{2}} \, \ldots \, {{{\mathbf {y}}}_{M}} \right] \in {{{\mathbb {C}}}^{1\times ML}}\). The second terms of \(L\left( {{{\tilde{\gamma }}}_{k}},{{{\tilde{\vartheta }}}_{k}} \right) \) and \(\breve{L}\left( {{{\tilde{\gamma }}}_{k}},{{{\tilde{\vartheta }}}_{k}} \right) \) can be calculated, respectively, as

$$\begin{aligned}&{{{\mathbf {z}}}^{H}}{{\left( \left( {{{{\breve{{\varvec{\Sigma }} }}}}_{-k}}+{{{\tilde{\gamma }}}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) \otimes {{{\mathbf {I}}}_{L}} \right) }^{-1}}{\mathbf {z}}\\&\quad ={{{\mathbf {z}}}^{H}}\left( \mathbf {Q}\otimes {{{\mathbf {I}}}_{L}} \right) {\mathbf {z}}\\&\quad =\sum \limits _{i=1}^{M}{\sum \limits _{j=1}^{M}{{{q}_{ij}} {{{\bar{\mathbf{y}}}}_{i}}{\mathbf {y}}_{j}^{T}}},\\&{\text {tr}}\left( {{{\mathbf {Y}}}^{H}}{{\left( {{{{\breve{{\varvec{\Sigma }} }}}}_{-k}}+{{{\tilde{\gamma }}}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) }^{-1}}{\mathbf {Y}} \right) \\&\quad ={\text {tr}}\left( \mathbf {QY}{{{\mathbf {Y}}}^{H}} \right) \\&\quad =\sum \limits _{i=1}^{M}{\sum \limits _{j=1}^{M}{{{q}_{ij}} {{{\mathbf {y}}}_{j}}{\mathbf {y}}_{i}^{H}}}. \end{aligned}$$

Because of \({{{\mathbf {y}}}_{j}}{\mathbf {y}}_{i}^{H}= \sum \limits _{k=1}^{L}{{{y}_{jk}}{{{\bar{y}}}_{ik}}} ={{\bar{\mathbf {y}}}_{i}}{\mathbf {y}}_{j}^{T}\), we have

$$\begin{aligned}&{{{\mathbf {z}}}^{H}}{{\left( \left( {{{{\breve{{\varvec{\Sigma }} }}}}_{-k}}+{{{\tilde{\gamma }}}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) \otimes {{{\mathbf {I}}}_{L}} \right) }^{-1}}{\mathbf {z}}\\&\quad = {\text {tr}}\left( {{{\mathbf {Y}}}^{H}}{{\left( {{{{\breve{{\varvec{\Sigma }} }}}}_{-k}}+{{{\tilde{\gamma }}}_{k}}{\mathbf {a}}\left( {{{\tilde{\vartheta }}}_{k}} \right) {{{\mathbf {a}}}^{H}}\left( {{{\tilde{\vartheta }}}_{k}} \right) \right) }^{-1}}{\mathbf {Y}} \right) , \end{aligned}$$

and thus Proposition 2 is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, B., Liu, J., Xie, M. et al. A new direction-of-arrival estimation method exploiting signal structure information. Multidim Syst Sign Process 28, 183–205 (2017). https://doi.org/10.1007/s11045-015-0339-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0339-2

Keywords

Navigation