Skip to main content
Log in

Hybrid threshold optimization between global image and local regions in image segmentation for melasma severity assessment

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Melasma image segmentation plays a fundamental role for computerized melasma severity assessment. A method of hybrid threshold optimization between a given image and its local regions is proposed and used for melasma image segmentation. An analytic optimal hybrid threshold solution is obtained by minimizing the deviation between the given image and its segmented outcome. This optimal hybrid threshold comprises both local and global information around image pixels and is used to develop an optimal hybrid thresholding segmentation method. The developed method is firstly evaluated based on synthetic images and subsequently used for melasma segmentation and severity assessment. Statistical evaluations of experimental results based on real-world melasma images show that the proposed method outperforms other state-of-the-art thresholding segmentation methods for melasma severity assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balkrishnan, R., McMichael, A., Camacho, F., Saltzberg, F., Housman, T., Grummer, S., et al. (2003). Development and validation of a health-related quality of life instrument for women with melasma. British Journal of Dermatology, 149(3), 572–577.

    Article  Google Scholar 

  • Don, H.-S. (2001). A noise attribute thresholding method for document image binarization. International Journal on Document Analysis and Recognition, 4(2), 131–138.

    Article  Google Scholar 

  • Grimes, P. E. (1995). Melasma: Etiologic and therapeutic considerations. Archives of Dermatology, 131(12), 1453–1457.

    Article  Google Scholar 

  • Handel, A., Lima, P., Tonolli, V., Miot, L., & Miot, H. (2014). Risk factors for facial melasma in women: A case–control study. British Journal of Dermatology, 171(3), 588–594.

    Article  Google Scholar 

  • Hunter, R. S. (1958). Photoelectric color difference meter. Journal of the Optical Society of America, 48(12), 985–993.

    Article  Google Scholar 

  • Jobson, D. J., Rahman, Z.-U., & Woodell, G. A. (1997). Properties and performance of a center/surround retinex. IEEE Transactions on Image Processing, 6(3), 451–462.

    Article  Google Scholar 

  • Kapur, J. N., Sahoo, P. K., & Wong, A. K. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing, 29(3), 273–285.

    Article  Google Scholar 

  • Kim, I.-J. (2004). Multi-window binarization of camera image for document recognition. In Proceedings of the ninth international workshop on frontiers in handwriting recognition, pp. 323–327.

  • Korotkov, K., & Garcia, R. (2012). Computerized analysis of pigmented skin lesions: A review. Artificial Intelligence in Medicine, 56(2), 69–90.

    Article  Google Scholar 

  • Lee, L. K., Liew, S. C., & Thong, W. J. (2015). A review of image segmentation methodologies in medical image. In H. A. Sulaiman, M. A. Othman, M. F. I. Othman, Y. A. Rahim, & N. C. Pee (Eds.), Advanced computer and communication engineering technology, Vol. 315 of Lecture Notes in Electrical Engineering (pp. 1069–1080). Springer International Publishing.

  • Liang, Y., Lin, Z., Gu, J., Ser, W., Lin, F., Tay, E.Y., Gan, E.Y., Tan, V.W.D., & Thng, T.G. (2015). Melasma image segmentation using extreme learning machine. In Proceedings of ELM-2014 Volume 2, Springer, 2015, pp. 369–377.

  • Li, C., Xu, C., Gui, C., & Fox, M. D. (2010). Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing, 19(12), 3243–3254.

    Article  MathSciNet  Google Scholar 

  • Maglogiannis, I., & Doukas, C. N. (2009). Overview of advanced computer vision systems for skin lesions characterization. IEEE Transactions on Information Technology in Biomedicine, 13(5), 721–733.

    Article  Google Scholar 

  • Moghaddam, R. F., & Cheriet, M. (2010). A multi-scale framework for adaptive binarization of degraded document images. Pattern Recognition, 43(6), 2186–2198.

    Article  MATH  Google Scholar 

  • Niblack, W. (1985). An introduction to digital image processing. Copenhagen: Strandberg Publishing Company.

    Google Scholar 

  • Otsu, N. (1975). A threshold selection method from gray-level histograms. Automatica, 11(285–296), 23–27.

    Google Scholar 

  • Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26(9), 1277–1294.

    Article  Google Scholar 

  • Pandya, A. G., Hynan, L. S., Bhore, R., Riley, F. C., Guevara, I. L., Grimes, P., et al. (2011). Reliability assessment and validation of the Melasma Area and Severity Index (MASI) and a new modified MASI scoring method. Journal of the American Academy of Dermatology, 64(1), 78–83.

    Article  Google Scholar 

  • Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2(1), 315–337.

    Article  Google Scholar 

  • Pirie, W. (1988). Spearman rank correlation coefficient. New York: Wiley Online Library.

    Google Scholar 

  • Robertson, A. R. (1977). The CIE 1976 color-difference formulae. Color Research & Application, 2(1), 7–11.

    Article  Google Scholar 

  • Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33(2), 225–236.

    Article  Google Scholar 

  • Sheth, V. M., & Pandya, A. G. (2011). Melasma: A comprehensive update. Journal of the American Academy of Dermatology, 65(4), 689–714.

    Article  Google Scholar 

  • Silveira, M., Nascimento, J. C., Marques, J. S., Marçal, A. R., Mendonça, T., Yamauchi, S., et al. (2009). Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE Journal of Selected Topics in Signal Processing, 3(1), 35–45.

    Article  Google Scholar 

  • Tamega, Ad, Miot, L., Bonfietti, C., Gige, T., Marques, M., Miot, H., et al. (2013). Clinical patterns and epidemiological characteristics of facial melasma in Brazilian women. Journal of the European Academy of Dermatology and Venereology, 27(2), 151–156.

    Article  Google Scholar 

  • Tay, E., Gan, E., Tan, V., Lin, Z., Liang, Y., Lin, F., et al. (2015). Pilot study of an automated method to determine Melasma Area and Severity Index. British Journal of Dermatology, 172(6), 1535–1540.

    Article  Google Scholar 

  • Wen, W., He, C., Zhang, Y., & Fang, Z. (2015). A novel method for image segmentation using reaction-diffusion model. Multidimensional Systems and Signal Processing. doi:10.1007/s11045-015-0365-0.

Download references

Acknowledgments

We wish to acknowledge the funding support by A*STAR-NHG-NTU Skin Research Grant 2014 (SRG\(\backslash \)14011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Sun, L., Ser, W. et al. Hybrid threshold optimization between global image and local regions in image segmentation for melasma severity assessment. Multidim Syst Sign Process 28, 977–994 (2017). https://doi.org/10.1007/s11045-015-0375-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0375-y

Keywords

Navigation