Skip to main content
Log in

Remote sensing image classification using extreme learning machine-guided collaborative coding

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Remote sensing image classification is a very challenging problem and covariance descriptor can be introduced in the feature extraction and representation process for remote sensing image. However, due to the reason that covariance descriptor lies in non-Euclidean manifold, conventional extreme learning machine (ELM) cannot effectively deal with this problem. In this paper, we propose an improved ELM framework which incorporates the collaborative coding to tackle the covariance descriptor classification problem. First, a new ELM-guided dictionary learning and coding model is proposed. Then the iterative optimization algorithm is developed to solve the model. By evaluating the proposed approach on the UCMERCED high-resolution aerial image dataset, we show the effectiveness of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexandre, E., Cuadra, L., Salcedo-Sanz, S., Pastor-Sanchez, A., & Casanova-Matero, C. (2015). Hybridizing extreme learning machines and genetic algorithms to select acoustic features in vehicle classification applications. Neurocomputing, 152, 58–68.

    Article  Google Scholar 

  • An, L., Yang, S., & Bhanu, B. (2015). Efficient smile detection by extreme learning machine. Neurocomputing, 149, 354–363.

    Article  Google Scholar 

  • Arsigny, V., Fillard, P., Pennec, X., & Ayache, N. (2006a). Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM Journal on Matrix Analysis and Applications, 29(1), 328–347.

    Article  MathSciNet  MATH  Google Scholar 

  • Arsigny, V., Fillard, P., Pennec, X., & Ayache, N. (2006b). Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56, 411–421.

    Article  Google Scholar 

  • Bai, Z., Huang, G. B., Kasun, L. L. C., & Vong, C. M. (2015). Local receptive fields based extreme learning machine. IEEE Computational Intelligence Magazine, 10(2), 18–29.

    Article  Google Scholar 

  • Bencherif, M. A., Bazi, Y., Guessoum, A., Alajlan, N., Melgani, F., & Alhichri, H. (2015). Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images. IEEE Geoscience and Remote Sensing Letters, 12(3), 527–531.

    Article  Google Scholar 

  • Bo, L., & Sminchisescu, C. (2009). Efficient match kernels between sets of features for visual recognition. Advances in Neural Information Processing Systems, 22, 35–143.

  • Cao, J., Chen, T., & Fan, J. (2016). Landmark recognition with compact BoW histogram and ensemble ELM. Multimedia Tools and Applications, 75(5), 2839–2857.

    Article  Google Scholar 

  • Cao, J.,  &  Lin, Z. (2015). Extreme learning machine on high dimensional and large data applications: A survey. Mathematical Problems in Engineering, 103796, 1–13.

  • Cao, J., Lin, Z., Huang, G. B.,  &  Liu, N. (2012). Voting based extreme learning machine. Information Sciences, 15(1), 66–77.

  • Cao, J., Zhao, Y., Lai, X., Ong, M. E. H., Yin, C., Koh, Z., et al. (2015). Landmark recognition with sparse representation classification and extreme learning machine. Journal of the Franklin Institute, 352(10), 4528–4545.

    Article  MathSciNet  Google Scholar 

  • Chen, X., & Koskela, M. (2015). Skeleton-based action recognition with extreme learning machine. Neurocomputing, 149, 387–396.

    Article  Google Scholar 

  • Decherchi, S., Gastaldo, P., Cambria, E., & Redi, J. (2013). Circular-ELM for the reduced-reference assessment of perceived image quality. Neurocomputing, 102, 78–89.

    Article  Google Scholar 

  • Erdem, E., & Erdem, A. (2013). Visual saliency estimation by nonlinearly integrating features using region covariances. Journal of Vision, 13(4), 1–20.

    Article  MathSciNet  Google Scholar 

  • Gao, S., Tsang, I. W., & Chia, L. T. (2013). Sparse representation with kernels. IEEE Transactions on Image Processing, 22(2), 423–434.

    Article  MathSciNet  Google Scholar 

  • Han, M., & Liu, B. (2015). Ensemble of extreme learning machine for remote sensing image classification. Neurocomputing, 149, 65–70.

    Article  Google Scholar 

  • Harandi, M., & Salzmann, M. (2015). Riemannian coding and dictionary learning: Kernels to the rescue. In IEEE conference on computer vision and pattern recognition, pp. 3926–3935.

  • Huang, G. B., & Chen, L. (2007). Convex incremental extreme learning machine. Neurocomputing, 70, 3056–3062.

    Article  Google Scholar 

  • Huang, G. B., & Chen, L. (2008). Enhanced random search based incremental extreme learning machine. Neurocomputing, 71, 3460–3468.

    Article  Google Scholar 

  • Huang, G. B., Chen, L., & Siew, C. K. (2006a). Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17(4), 879–892.

    Article  Google Scholar 

  • Huang, G., Song, S., Gupta, J. N., & Wu, C. (2014). Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417.

    Article  Google Scholar 

  • Huang, G. B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man and Cybernetics, 42(2), 513–529.

    Article  Google Scholar 

  • Huang, G. B., Zhu, Q. Y., Mao, K. Z., Siew, C. K., Saratchandran, P., & Sundararajan, N. (2006b). Can threshold networks be trained directly? IEEE Transactions on Circuits and Systems II, 53(3), 187–191.

    Article  Google Scholar 

  • Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006c). Extreme learning machine: Theory and applications. Neurocomputing, 70, 489–501.

    Article  Google Scholar 

  • Kim, M. (2014). Efficient kernel sparse coding via first-order smooth optimization. IEEE Transactions on Neural Networks and Learning Systems, 25(8), 1447–1459.

    Article  Google Scholar 

  • Li, P., Wang, Q., Zuo, W., & Zhang, L. (2013). Log-Euclidean kernels for sparse representation and dictionary learning. In IEEE international conference on computer vision, pp. 1601–1608.

  • Minhas, R., Baradarani, A., Seifzadeh, S., & Wu, Q. J. (2010). Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing, 73, 1906–1917.

    Article  Google Scholar 

  • Nguyen, H., Patel, V. M., Nasrabadi, N., & Chellappa, R. (2013). Design of non-linear kernel dictionaries for object recognition. IEEE Transactions on Image Processing, 22(12), 5123–5135.

    Article  MathSciNet  Google Scholar 

  • Porikli, F., Tuzel, O., & Meer, P. (2006). Covariance tracking using model update based on Lie Algebra. In IEEE computer society conference on computer vision and pattern recognition, pp. 728–735.

  • Rong, H. J., Huang, G. B., Sundararajan, N., & Saratchandran, P. (2009). Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Transactions on Systems, Man and Cybernetics, 39(4), 1067–1072.

    Article  Google Scholar 

  • Rong, H. J., Jia, Y. X., & Zhao, G. S. (2014). Aircraft recognition using modular extreme learning machine. Neurocomputing, 128, 166–174.

    Article  Google Scholar 

  • Tang, J., Deng, C., & Huang, G. B. (2016). Extreme learning machine for multilayer perceptron. IEEE Transactions on Neural Networks and Learning Systems, 27(4), 809–821.

    Article  MathSciNet  Google Scholar 

  • Tang, J., Deng, C., Huang, G. B., & Zhao, B. (2015). Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1174–1185.

    Article  Google Scholar 

  • Tuzel, O., Porikli, F., & Meer, P. (2006). Region covariance: A fast descriptor for detection and classification. In European conference on computer visoin, pp. 589–600.

  • Tuzel, O., Porikli, F., & Meer, P. (2008). Pedestrian detection via classification on Riemannian manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(10), 1713–1727.

    Article  Google Scholar 

  • Wang, L., Liu, H., & Sun, F. (2016). Dynamic texture video classification using extreme learning machine. Neurocomputing, 174, 278–285.

  • Yang, Y., & Newsam, S. (2010). Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, pp. 270–279.

  • Yang, Y., & Newsam, S. (2010). Spatial pyramid co-occurrence for image classification. In Proceedings of the 7th IEEE international conference on computer vision, pp. 1465–1472.

  • Yang, Y., & Wu, Q. M. J. (2015). Multilayer extreme learning machine with subnetwork nodes for representation learning. IEEE Transactions on Cybernetics, PP(99), 1–14.

  • Zhu, W., Miao, J., Hu, J., & Qing, L. (2014). Vehicle detection in driving simulation using extreme learning machine. Neurocomputing, 128, 160–165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaping Liu.

Additional information

This work was supported in part by the National Key Project for Basic Research, China, under Grant 2013CB329403, in part by the National Natural Science Foundation of China under Grant 61327809, and in part by the National High-Tech Research and Development Plan under Grant 2015AA042306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Liu, H., Wang, S. et al. Remote sensing image classification using extreme learning machine-guided collaborative coding. Multidim Syst Sign Process 28, 835–850 (2017). https://doi.org/10.1007/s11045-016-0403-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0403-6

Keywords

Navigation