Skip to main content
Log in

NMR image segmentation based on Unsupervised Extreme Learning Machine

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Unsupervised Extreme Learning Machine (US-ELM) is a machine learning method widely used. With good performance in anti-noise and data representation, as well as fast clustering speed, US-ELM is suitable for processing noise containing nuclear magnetic resonance (NMR) image. Therefore, in this paper, a brain NMR image segmentation approach based on US-ELM is proposed. Firstly, a median filter is adopted to reduce the influence of noise; Secondly, US-ELM maps the original data into the embedded space, which makes it increasingly effective to represent the characteristic of pixel points, and then uses the k-means method to perform the image segmentation, named NS-UE; After that, spatial fuzzy C-means (spFCM) provides a better solution for handling NMR image with noise caused by the intensity inhomogeneity than k-means does. As a result, an image segmentation approach based on US-ELM and spFCM (NS-UF) is proposed, so as to improve the effect of clustering in embedded space. Finally, extensive experiments on real data demonstrated the efficiency and effectiveness of our proposed approaches with various experimental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adhikari, S. K., Sing, J. K., Basu, D. K., & Nasipuri, M. (2015). A Spatial fuzzy C-means algorithm with application to MRI image segmentation. In Proceedings of the 8th international conference on advances in pattern recognition (ICAPR), pp. 539–547.

  • Borsotti, M., Campadelli, P., & Schettini, R. (1998). Quantitative evaluation of color image segmentation results. Pattern Recognition Letters, 19(8), 741–747.

    Article  MATH  Google Scholar 

  • Cao, J., Chen, T., & Fan, J. (2015). Landmark recognition with compact BoW histogram and ensemble ELM. Multimedia Tools and Applications, 75(5), 2839–2857. doi:10.1007/s11042-014-2424-1.

    Article  Google Scholar 

  • Cao, J., & Lin, Z. (2015). Extreme learning machines on high dimensional and large data applications: A survey. Mathematical Problems in Engineering, 2015(3), 1–12. Article ID 103796.

    Google Scholar 

  • Cao, J., Zhao, Y., Lai, X., et al. (2015). Landmark recognition with sparse representation classification and extreme learning machine. Journal of The Franklin Institute, 352(10), 4528–4545.

    Article  MathSciNet  Google Scholar 

  • Chabrier, S., Emile, B., Rosenberger, C., Laurent, H. (2006). Unsupervised performance evaluation of image segmentation. Eurasip Journal on Applied Signal Processing, Article ID 96306, pp. 1–12.

  • Clarke, L., Velthuizen, R., Camacho, M., Heine, J., & Vaidyanathan, M. (1995). MRI segmentation: Methods and applications. Magnetic Resonance Imaging, 13(3), 343–368.

    Article  Google Scholar 

  • David, R., & Mohamed, c. (2011). Unsupervised MRI segmentation of brain tissues using a local linear model and level set. Magnetic Resonance Imaging, 29(2), 243–259.

    Article  Google Scholar 

  • Desrosiers, C. (2014). An unsupervised random walk approach for the segmentation of brain MRI. In Proceedings of IEEE 11th international symposium on biomedical imaging (ISBI), pp. 337–340. doi:10.1109/ISBI.2014.6867877.

  • Huang, G. B., & Chen, L. (2007). Convex incremental extreme learning machine. Neurocomputing, 70(16–18), 3056–3062.

    Article  Google Scholar 

  • Huang, G. B., & Chen, L. (2008). Enhanced random search based incremental extreme learning machine. Neurocomputing, 71(16–18), 3460–3468.

    Article  Google Scholar 

  • Huang, G. B., Chen, L., & Siew, C.-K. (2006b). Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17(4), 879–892.

    Article  Google Scholar 

  • Huang, G. B., Ding, X., & Zhou, H. (2010). Optimization method based extreme learning machine for classification. Neurocomputing, 74(1–3), 155–163.

    Article  Google Scholar 

  • Huang, G., Song, S., Gupta, J. N. D., & Wu, C. (2014). Semi-supervised and Unsupervised Extreme Learning Machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417.

    Article  Google Scholar 

  • Huang, G. B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(2), 513–529.

    Article  Google Scholar 

  • Huang, G. B., Zhu, Q.-Y., & Siew, C.-K. (2006a). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.

    Article  Google Scholar 

  • Juan-Albarracn, J., Fuster-Garcia, E., & Manjn, J, V. (2015). Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. Plos One, 10(5), 1–20. doi:10.1371/journal.pone.0125143.

    Google Scholar 

  • Jyoti, A., Mohanty, M. N., & Kar, S. K. (2015). Optimized clustering method for CT brain image segmentation. Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), 327, 317–324.

    Google Scholar 

  • Kallergi, M., Clark, R., & Clarke, L. (1997). Medical image databases for CAD applications in digital mammography: Design issues. Studies in Health Technology and Informatics, 43(Pt B), 601–605.

    Google Scholar 

  • Levine, M. D., & Nazif, A. M. (1985). Dynamic measurement of computer generated image segmentations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(2), 155–164.

    Article  Google Scholar 

  • Pham, V. H., & Lee, B. R. (2015). An image segmentation approach for fruit fefect fetection using k-means clustering and graph-based algorithm. Vietnam Journal of Computer Science, 2(1), 25–33.

    Article  Google Scholar 

  • Pham, D., Xu, C., & Prince, J. (2000). Current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2(1), 175–272. doi:10.1146/annurev.bioeng.2.1.315.

    Article  Google Scholar 

  • Rosenberger, C. (1999). Mise En Oeuvre Dún systéme Adaptatif Desegmentation Dímages. Ph.D. Thesis, Université de Rennes 1, Rennes, France.

  • Thamaraichelvi, B., & Govindarajan, Y. (2015). A complexity reduced FCM based segmentation technique for brain MRI image classification. Journal of Medical Imaging and Health Informatics, 5(2), 202–209.

    Article  Google Scholar 

  • Vijaya, G., & Suhasini, A. (2015). Synergistic clinical trials with CAD systems for the early detection of lung cancer. In Proceedings of international conference on artificial intelligence and evolutionary algorithms in engineering systems (ICAEES), pp. 561–567.

  • Xue, J. H., Philips, W., Pizurica, A., & Lemahieu, I. (2001). A Novel method for adaptive enhancement and unsupervised segmentation of MRI brain image. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 3, 2013–2016.

    Google Scholar 

  • Yong, H. L., & Kassam, S. A. (2012). Generalized median filtering and related nonlinear filtering techniques. IEEE Transactions on Acoustics Speech and Signal Processing, 33(3), 672–683.

    Article  Google Scholar 

  • Zeboudj, R. (1988). Filtrage: Seuillage Automatique, Contraste et Contours: Du pré-traitement á lánalyse dímage. Ph.D. Thesis, Universit é de Saint Etienne, Saint Etienne, France.

  • Zhang, L., & Zhang, D. (2015). Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Transactions on Instrumentation and Measurement, 64(7), 1790–1801.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the National Natural Science Foundation of China under Grant Nos. 61472069 and 61402089; And the Fundamental Research Funds for the Central Universities under Grant No. N150408001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchang Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, J., Wang, Z., Tian, S. et al. NMR image segmentation based on Unsupervised Extreme Learning Machine. Multidim Syst Sign Process 28, 1013–1030 (2017). https://doi.org/10.1007/s11045-016-0411-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0411-6

Keywords

Navigation