Skip to main content
Log in

DOA estimation with a rotational uniform linear array (RULA) and unknown spatial noise covariance

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Direction of Arrival (DOA) estimation is one of the major tasks in array signal processing. In this paper, a new DOA estimation method is proposed using a rotational uniform linear array (RULA) consisting of omnidirectional sensors. The main contribution of the proposed method is that the number of distinguishable signals is larger than the methods in the literature with a uniform linear array consisting of the same number of omnidirectional sensors. Moreover, the new method can effectively reduce unknown spatial noises using a generalized complement projection matrix under the RULA framework. Simulations are presented to illustrate the effectiveness of the proposed method and comparison with some existing DOA estimation methods is also made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Here \(\mathbb {C}^{N \times K}\) denotes the set of complex matrices of dimension \(N\times K\) and \(\mathbb {C}^N=\mathbb {C}^{N \times 1}\) the set of complex vectors of dimension N.

References

  • Cao, M.-Y., Huang, L., Qian, C., Xue, J.-Y., & So, H. (2015). Underdetermined DOA estimation of quasi stationary signals via Khatri Rao structure for uniform circular array. Signal Processing, 106, 41–48.

    Article  Google Scholar 

  • Chevalier, P., Albera, L., Ferréol, A., & Comon, P. (2005). On the virtual array concept for higher order array processing. IEEE Transactions on Signal Processing, 53(4), 1254–1271.

    Article  MathSciNet  MATH  Google Scholar 

  • Chevalier, P., & Férréol, A. (1999). On the virtual array concept for the fourth-order direction finding problem. IEEE Transactions on Signal Processing, 47(9), 2592–2595.

    Article  MATH  Google Scholar 

  • Chevalier, P., Ferréol, A., & Albera, L. (2006). High-resolution direction finding from higher order statistics: The 2q-MUSIC algorithm. IEEE Transactions on Signal Processing, 54(8), 2986–2997.

    Article  MATH  Google Scholar 

  • Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, D., Bao, M., Ye, Z., Guan, L., & Li, X. (2011). A novel wideband DOA estimator based on Khatri Rao subspace approach. Signal Processing, 91(10), 2415–2419.

    Article  MATH  Google Scholar 

  • Figueiredo, M. A., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. Journal of Selected Topics in Signal Processing, 1(4), 586–597.

    Article  Google Scholar 

  • Grant, M., Boyd, S., Ye, Y. (2008). Cvx: Matlab software for disciplined convex programming.

  • Gurbuz, A. C., Cevher, V., & McClellan, J. H. (2012). Bearing estimation via spatial sparsity using compressive sensing. IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1358–1369.

    Article  Google Scholar 

  • Han, F.-M., & Zhang, X.-D. (2005). An ESPRIT-like algorithm for coherent DOA estimation. Antennas and Wireless Propagation Letters, 4, 443–446.

    Article  Google Scholar 

  • Haupt, J., & Nowak, R. (2006). Signal reconstruction from noisy random projections. IEEE Transactions on Information Theory, 52(9), 4036–4048.

    Article  MathSciNet  MATH  Google Scholar 

  • Isaacs, J. T., Quitin, F., Garcia Carrillo, L. R. Madhow, U., Hespanha, J. P. (2014). Quadrotor control for rf source localization and tracking. In Unmanned Aircraft Systems (ICUAS), 2014 International Conference on, IEEE, pp. 244–252.

  • Kaveh, M. & Bassias, A. (1990). Threshold extension based on a new paradigm for MUSIC-type estimation. In International Conference on Acoustics, Speech, and Signal Processing. ICASSP-90., IEEE, pp. 2535–2538.

  • Kaveh, M., & Barabell, A. (1986). The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(2), 331–341.

    Article  Google Scholar 

  • Lavate, T. B., Kokate, V., Sapkal, A. (2010). Performance analysis of MUSIC and ESPRIT DOA estimation algorithms for adaptive array smart antenna in mobile communication. In Second International Conference on Computer and Network Technology (ICCNT), IEEE, pp. 308–311.

  • Lie, J. P., Blu, T., & See, C. M. S. (2010). Single antenna power measurements based direction finding. IEEE Transactions on Signal Processing, 58(11), 5682–5692.

    Article  MathSciNet  Google Scholar 

  • Ma, W.-K., Hsieh, T.-H., & Chi, C.-Y. (2010). DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: a Khatri-Rao subspace approach. IEEE Transactions on Signal Processing, 58(4), 2168–2180.

    Article  MathSciNet  Google Scholar 

  • Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of the IEEE, 63(4), 561–580.

    Article  Google Scholar 

  • Malioutov, D., Çetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, M. I., & Fuhrmann, D. R. (1990). Maximum-likelihood narrow-band direction finding and the EM algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(9), 1560–1577.

    Article  MATH  Google Scholar 

  • Paulraj, A., & Kailath, T. (1986). Eigenstructure methods for direction of arrival estimation in the presence of unknown noise fields. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(1), 13–20.

    Article  MathSciNet  Google Scholar 

  • Rao, B. D., & Hari, K. (1989). Performance analysis of root-MUSIC. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(12), 1939–1949.

    Article  Google Scholar 

  • Roy, R., & Kailath, T. (1989). Esprit-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7), 984–995.

    Article  MATH  Google Scholar 

  • Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  Google Scholar 

  • Stoica, P., & Arye, N. (1989). MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(5), 720–741.

    Article  MathSciNet  MATH  Google Scholar 

  • Stoica, P., & Nehorai, A. (1990). MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(12), 2140–2150.

    Article  Google Scholar 

  • Sugimoto, Y., Miyabe, S., Yamada, T., Makino, S., Juang, F. (2012). Underdetermined DOA estimation by the non-linear MUSIC exploiting higher-order moments. In International Workshop on Acoustic Signal Enhancement; Proceedings of IWAENC, VDE, pp. 1–4.

  • Tan, Z., Eldar, Y. C., & Nehorai, A. (2014). Direction of arrival estimation using co-prime arrays: A super resolution viewpoint. IEEE Transactions on Signal Processing, 62(21), 5565–5576.

    Article  MathSciNet  Google Scholar 

  • Thorvaldsen, T. (1980). Maximum entropy spectral analysis in antenna spatial filtering. IEEE Transactions on Antennas and Propagation, 28(4), 556–560.

    Article  Google Scholar 

  • Tian, Y., Sun, X., & Zhao, S. (2014). DOA and power estimation using a sparse representation of second-order statistics vector and \(\ell _0\) norm approximation. Signal Processing, 105, 98–108.

    Article  Google Scholar 

  • Tropp, J., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X., Wang, W., Liu, J., Li, X., & Wang, J. (2014). A sparse representation scheme for angle estimation in monostatic mimo radar. Signal Processing, 104, 258–263.

    Article  Google Scholar 

  • Wang, B., Zhao, Y., & Liu, J. (2013). Mixed-order MUSIC algorithm for localization of far-field and near-field sources. IEEE Transactions on Signal Processing, 20, 311–314.

    Article  Google Scholar 

  • Xiaofei, Z., Ming, Z., Han, C., & Jianfeng, L. (2014). Two-dimensional DOA estimation for acoustic vector-sensor array using a successive MUSIC. Multidimensional Systems and Signal Processing, 25(3), 583–600.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, W., & Chen, B.-X. (2013). Novel methods of DOA estimation based on compressed sensing. Multidimensional Systems and Signal Processing, 26(1), 113–123.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the funding support for this project from Nanyang Technological University under the Undergraduate Research Experience on Campus (URECA) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Lin.

Appendix

Appendix

1.1 Proof of Proposition 1

An array contains at least 2 elements. For the number of elements \(N \ge 2\), we have \(N^2 > 2N-1\). The number of rows in \(\mathbf {G}\) is larger than the number of columns and \(\mathbf {G}\) is of full column rank. To complete the matrix, we construct a full column rank matrix \(\mathbf {F} \in \mathbb {R}^{N^2 \times (N-1)^2}\), where each column in \(\mathbf {F}\) is linearly independent of the columns in \(\mathbf {G}\). Note that \(2N-1+(N-1)^2\) is equal to \(N^2\). Put two block matrices \(\mathbf {F}\) and \(\mathbf {G}\) together to form a new matrix \(\mathbf {H} = \left[ \mathbf {F} \ \mathbf {G}\right] \in \mathbb {R}^{N^2 \times N^2}\). It is easy to see that \(\mathbf {H}\) is of full rank \(N^2\). Now construct \(\widetilde{\mathbf {H}} = \mathrm{diag}\left\{ \mathbf {H}, \mathbf {H}, \ldots , \mathbf {H}\right\} \in \mathbb {R}^{N_\varphi N^2 \times N_\varphi N^2}\), where \(\mathbf {H}\) appears \(N_\varphi \) times as a block diagonal element in \(\widetilde{\mathbf {H}}\). It is of full rank \(N_\varphi N^2\). Next we can prove that \(\mathbf {P}^\perp \widetilde{\mathbf {H}}\) is of rank \((N_\varphi -1)N^2\). To show this, we add the first block row of \(\widetilde{\mathbf {H}}\) to every other block rows and get \(\widetilde{\mathbf {H}}' = \begin{bmatrix} \mathbf {H}&\mathbf {0}&\cdots&\mathbf {0} \\ \mathbf {H}&\mathbf {H}&\cdots&\mathbf {0} \\ \vdots&\vdots&\vdots&\vdots \\ \mathbf {H}&\mathbf {0}&\cdots&\mathbf {H}\\ \end{bmatrix}\).

After multiplication with \(\mathbf {P}^\perp \), the first \(N^2\) columns of \(\widetilde{\mathbf {H}}'\) will vanish. Thus the rank of \(\mathbf {P}^\perp \widetilde{\mathbf {H}}'\) is smaller than or equal to \((N_\varphi -1) N^2\). At the same time, we notice that \(\mathbf {P}^\perp \) can eliminate at most \(N^2\) columns. So the rank of \(\mathbf {P}^\perp \widetilde{\mathbf {H}}'\) is larger than or equal to \((N_\varphi -1) N^2\). Putting them together, we conclude that the rank of \(\mathbf {P}^\perp \widetilde{\mathbf {H}}'\) is equal to \((N_\varphi -1) N^2\). Therefore, the rank of \(\mathbf {P}^\perp \widetilde{\mathbf {H}}\) is also equal to \((N_\varphi -1) N^2\). It means exactly \(N^2\) columns in \(\widetilde{\mathbf {H}}\) are eliminated. Among them, \((N-1)^2\) of them are linear combinations of the columns in \(\mathrm{diag}\left\{ \mathbf {F}, \mathbf {F}, \ldots , \mathbf {F}\right\} \in \mathbb {R}^{N_\varphi N^2 \times N_\varphi (N-1)^2}\). Those columns are linearly independent of the columns in \(\widetilde{\mathbf {G}}\). Therefore, \(\mathbf {P}^\perp \) will eliminate exactly \(2N-1\) columns of the linear combinations of columns in \(\widetilde{\mathbf {G}}\). As a result, \(\mathbf {P}^\perp \widetilde{\mathbf {G}}\) is of rank \(N_\varphi (2N-1) -(2N-1)=(N_\varphi -1)(2N-1)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lin, Z., Razul, S.G. et al. DOA estimation with a rotational uniform linear array (RULA) and unknown spatial noise covariance. Multidim Syst Sign Process 29, 537–561 (2018). https://doi.org/10.1007/s11045-016-0425-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0425-0

Keywords

Navigation