Skip to main content

Advertisement

Log in

Applying a modified version of Lyapunov exponent for cancer diagnosis in biomedical images: the case of breast mammograms

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Recently, there has been a great interest in the application of Lyapunov exponents for calculation of chaos levels in dynamical systems. Accordingly, this study aims at presenting two new methods for utilizing Lyapunov exponents to evaluate the spatiotemporal chaos in various images. Further, early detection of cancerous tumors could be obtained by measuring the chaotic indices in biomedical images. Unlike the available systems described by partial differential equations, the proposed method employs a number of interactive dynamic variables for image modeling. Since the Lyapunov exponents cannot be applied to such systems, the image model should be modified. The mean Lyapunov exponent is defined as a chaotic index for measuring the contour borders irregularities in images to detect benign or malignant tumors. Moreover, a two-dimensional mean Lyapunov exponent is incorporated to identify irregularities existing in each axis of the targeted images. Experiments on a set of region of interest in breast mammogram images yielded a sensitivity of 95 % and a specificity of 97.3 % and verified the remarkable precision of the proposed methods in classifying of breast lesions obtained from breast mammogram images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Maadeed, S., Al-Ali, A., & Abdalla, T. (2012). A new chaos-based image-encryption and compression algorithm. Journal of Electrical and Computer Engineering, 2012, 1–11.

    MathSciNet  MATH  Google Scholar 

  • Beheshti, S., AhmadiNoubari, H., Fatemizadeh, E., & Khalili, M. (2014). An efficient fractal method for detection and diagnosis of breast masses in mammograms. Journal of Digital Imaging, 27(5), 661–669.

    Article  Google Scholar 

  • Behnia, S., Panahi, M., Akhshani, A., & Mobaraki, A. (2011). Mean Lyapunov exponent approach for the helicoidal Peyrard–Bishop model. Physics Letters A, 375(41), 3574–3578.

    Article  MATH  Google Scholar 

  • Berber, T., Alpkocak, A., Balci, P., & Dicle, O. (2013). Breast mass contour segmentation algorithm in digital mammograms. Computer Methods and Programs in Biomedicine, 110(2), 150–159.

    Article  Google Scholar 

  • Blasch, E. P., Gao, J., & Tung, W.-W. (2012). Chaos-based image assessment for THz imagery. In 2012 11th International conference on information science, signal processing and their applications (ISSPA) (pp. 360–365). IEEE.

  • Cabral, T. M., & Rangayyan, R. M. (2012). Fractal analysis of breast masses in mammograms. Synthesis Lectures on Biomedical Engineering, 7(2), 1–118.

  • Cao, Y., Hao, X., Zhu, X., & Xia, S. (2010). An adaptive region growing algorithm for breast masses in mammograms. Frontiers of Electrical and Electronic Engineering in China, 5(2), 128–136.

    Article  Google Scholar 

  • Chauveau, J., Rousseau, D., & Chapeau-Blondeau, F. (2010). Fractal capacity dimension of three-dimensional histogram from color images. Multidimensional Systems and Signal Processing, 21(2), 197–211.

    Article  MathSciNet  MATH  Google Scholar 

  • de Oliveira Martins, L., Junior, G. B., Silva, A. C., de Paiva, A. C., & Gattass, M. (2009). Detection of masses in digital mammograms using k-means and support vector machine. ELCVIA: Electronic Letters on Computer Vision and Image Analysis, 8(2), 39–50.

    Google Scholar 

  • Doi, K. (2007). Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Computerized Medical Imaging and Graphics, 31(4), 198–211.

    Article  Google Scholar 

  • EtehadTavakol, M., Lucas, C., Sadri, S., & Ng, E. (2010). Analysis of breast thermography using fractal dimension to establish possible difference between malignant and benign patterns. Journal of Healthcare Engineering, 1(1), 27–44.

    Article  Google Scholar 

  • EtehadTavakol, M., Ng, E., Lucas, C., Sadri, S., & Ataei, M. (2012). Nonlinear analysis using Lyapunov exponents in breast thermograms to identify abnormal lesions. Infrared Physics & Technology, 55(4), 345–352.

    Article  Google Scholar 

  • Fujita, H., Nogata, F., Jiang, H., Kido, S., Feng, T., Hara, T., et al. (2012). Medical image processing and computer-aided detection/diagnosis (CAD). In 2012 International conference on computerized healthcare (ICCH) (pp. 66–71). IEEE.

  • Guliato, D., de Carvalho, J. D., Rangayyan, R. M., & Santiago, S. A. (2008a). Feature extraction from a signature based on the turning angle function for the classification of breast tumors. Journal of Digital Imaging, 21(2), 129–144.

    Article  Google Scholar 

  • Guliato, D., Rangayyan, R. M., Carvalho, J. D., & Santiago, S. A. (2008b). Polygonal modeling of contours of breast tumors with the preservation of spicules. IEEE Transactions on Biomedical Engineering, 55(1), 14–20.

    Article  Google Scholar 

  • Gupta, S., Sadiq, M., Gupta, M., & Rao, N. (2011). Semi-automatic segmentation of breast cancer for mammograms based on watershed segmentation. In Proceedings of the 5th national conference for nation development.

  • Hilborn, R. C. (2000). Chaos and nonlinear dynamics: An introduction for scientists and engineers. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Hsu, R. C., Chan, D. Y., Liu, C.-T., & Lai, W.-C. (2012). Contour extraction in medical images using initial boundary pixel selection and segmental contour following. Multidimensional Systems and Signal Processing, 23(4), 469–498.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, X. (2011). Image encryption algorithm using chaotic Chebyshev generator. Nonlinear Dynamics, 67(4), 2411–2417.

    Article  MathSciNet  Google Scholar 

  • Khaki-Sedigh, A., Ataei, M., Lohmann, B., & Lucas, C. (2004). Adaptive calculation of Lyapunov exponents from time series observations of chaotic time varying dynamical systems. Nonlinear Dynamics and Systems Theory, 4, 145–159.

    MathSciNet  MATH  Google Scholar 

  • Larvie, J., Sefidmazgi, M., Homaifar, A., Harrison, S., Karimoddini, A., & Guiseppi-Elie, A. (2016). Stable gene regulatory network modeling from steady-state data. Bioengineering, 3(2), 12.

    Article  Google Scholar 

  • Liu, J., Chen, J., Liu, X., Chun, L., Tang, J., & Deng, Y. (2011). Mass segmentation using a combined method for cancer detection. BMC Systems Biology, 5(3), 1–9.

    Google Scholar 

  • Ma, L., & Staunton, R. C. (2013). Analysis of the contour structural irregularity of skin lesions using wavelet decomposition. Pattern Recognition, 46(1), 98–106.

    Article  Google Scholar 

  • Mu, T., Nandi, A. K., & Rangayyan, R. M. (2007). Classification of breast masses via nonlinear transformation of features based on a kernel matrix. Medical & Biological Engineering & Computing, 45(8), 769–780.

    Article  Google Scholar 

  • Mu, T., Nandi, A. K., & Rangayyan, R. M. (2008). Classification of breast masses using selected shape, edge-sharpness, and texture features with linear and kernel-based classifiers. Journal of Digital Imaging, 21(2), 153–169.

    Article  Google Scholar 

  • Ott, E. (2002). Chaos in dynamical systems. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Pham, T. D., & Ichikawa, K. (2013). Spatial chaos and complexity in the intracellular space of cancer and normal cells. Theoretical Biology & Medical Modelling, 10, 62.

    Article  Google Scholar 

  • Positano, V., Mammoliti, R., Benassi, A., Landini, L., & Santarelli, M. (2000). Nonlinear analysis of carotid artery echographic images. IEE Proceedings-Science, Measurement and Technology, 147(6), 327–332.

    Article  Google Scholar 

  • Rangayyan, R. M., Mudigonda, N. R., & Desautels, J. E. L. (2000). Boundary modelling and shape analysis methods for classification of mammographic masses. Medical & Biological Engineering & Computing, 38(5), 487–496.

    Article  Google Scholar 

  • Rangayyan, R. M., & Nguyen, T. M. (2007). Fractal analysis of contours of breast masses in mammograms. Journal of Digital Imaging, 20(3), 223–237.

    Article  Google Scholar 

  • Schuster, H . G., & Just, W. (2006). Deterministic chaos: An introduction. London: Wiley.

    MATH  Google Scholar 

  • Shanthi, P., & Bhuvaneswaran, R. (2014). Robust chaos based image watermarking scheme for fractal-wavelet. Applied Mathematical Sciences, 8(32), 1593–1604.

    Article  Google Scholar 

  • Shibata, H. (1999). Lyapunov exponent of partial differential equation. Physica A, 264(1), 226–233.

    Article  Google Scholar 

  • Übeyli, E. D. (2010). Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals. Expert Systems with Applications, 37(2), 1192–1199.

    Article  Google Scholar 

  • Wei, J., Sahiner, B., Hadjiiski, L. M., Chan, H.-P., Petrick, N., Helvie, M. A., et al. (2005). Computer-aided detection of breast masses on full field digital mammograms. Medical Physics, 32(9), 2827–2838.

    Article  Google Scholar 

  • Xu, C., Pham, D. L., & Prince, J. L. (2000). Image segmentation using deformable models. Handbook of Medical Imaging, 2, 129–174.

    Google Scholar 

  • Yafei, Z., Minhui, Z., & Jinsong, C. (2007). Distributed target detection in SAR images using improved chaos-based method. In 2007 IEEE international geoscience and remote sensing symposium (pp. 929–932). IEEE.

  • Yang, S., He, S., & Lin, H. (2008). Video Image Targets Detection Based on the largest Lyapunov exponent. In 2008 The 9th international conference for young computer scientists (pp. 2973–2977). IEEE.

  • Yin, J., Gao, C., & Jia, X. (2012). Using Hurst and Lyapunov exponent for hyperspectral image feature extraction. IEEE Geoscience and Remote Sensing Letters, 9(4), 705–709.

    Article  Google Scholar 

  • Yu, L., Zhang, D., Wang, K., & Yang, W. (2005). Coarse iris classification using box-counting to estimate fractal dimensions. Pattern Recognition, 38(11), 1791–1798.

    Article  Google Scholar 

  • Zhang, Y. (2011). Chaotic analysis of ocean clutter. In 2011 4th International congress on image and signal processing (Vol. 5, pp. 2720–2724). IEEE.

  • Zhao, L., Ma, N., & Xu, X. (2008). Face recognition based on fractal dimension. In 2008 7th World congress on intelligent control and automation (pp. 6830–6833). IEEE.

  • Zhao, Y. (2003). Introduction to some methods of chaos analysis and control for PDEs. Lecture notes in control and information sciences (Vol. 292). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Khaki-Sedigh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadadi, H., Khaki-Sedigh, A., Ataei, M. et al. Applying a modified version of Lyapunov exponent for cancer diagnosis in biomedical images: the case of breast mammograms. Multidim Syst Sign Process 29, 19–33 (2018). https://doi.org/10.1007/s11045-016-0446-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0446-8

Keywords

Navigation