Abstract
In this paper, a novel independent partition Rao-Blackwellized particle filter (IPRBPF) is proposed to estimate the moving target parameters in MIMO radar. Firstly, noticing that the likelihood function is a nonlinear function of the nonlinear position parameters, and that the target motion equation is a linear function of linear parameters such as velocity, acceleration and etc. The nonlinear particle filter is proposed to estimate the nonlinear position parameters and the linear Kalman filter is proposed to estimate the linear parameters. Then a new MIMO radar parameter estimation algorithm based on Rao-Blackwellized particle filter is obtained. Furtherly, considering that the computational complexity will increase dramatically with the targets’ state dimension in the case of multiple targets, the independent partition sampling is put forward to improve the performance of our algorithm, then the IPRBPF algorithm is obtained. Compared with the existing methods, the proposed algorithm can achieve the lower computational complexity and the higher accuracy of parameter estimation. Simulation results demonstrate the advantages of the proposed algorithm.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.
Barbarossa, S., Scaglione, A., & Giannakis, G. B. (1998). Product high-order ambiguity function for multi component polynomial-phase signal modeling. IEEE Transactions on Signal Processing, 46(3), 691–708.
Chen, H. W., Li, X., Jiang, W. D., & Zhuang, Z. W. (2012). MIMO radar sensitivity analysis of antenna position for direction finding. IEEE Transactions on Signal Processing, 60(10), 5201–5216.
Doucet, A., Freitas, N. D., & Gordon, N. (2001). Sequential monte carlo methods in practice. Technometrics, 45(1), 106–106.
Fan, X., Fan, G. L., & Havlicek, J. P. (2010). Generative model for maneuvering target tracking. IEEE Transactions on Aerospace and Electronic Systems, 46(2), 635–655.
Fishler, E., Haimovich, A., Blum, R. S., Cimini, L. J., Chizhik, D., & Valenzuela, R. A. (2006). Spatial diversity in radars-models and detection performance. IEEE Transactions on Signal Processing, 54(3), 823–838.
Friedlander, B. (2009). On the relationship between MIMO and SIMO radars. IEEE Transactions on Signal Processing, 57(1), 394–398.
Gini, F., & Giannakis, G. B. (1999). Hybrid FM-polynomial phase signal modeling: Parameter estimation and Cramer-Rao bounds. IEEE Transactions on Signal Processing, 47(2), 363–377.
Godrich, H., Chiriac, V. M., Haimovich, A. M., & Blum, R. S. (2010a). Target tracking in MIMO radar systems: Techniques and performance analysis. In IEEE radar conference (Vol. 2010, pp. 1111–1116).
Godrich, H., Haimovich, A. M., & Blum, R. S. (2009). A MIMO radar system approach to target tracking. In IEEE 2009 conference record of the forty-third Asilomar conference on signals, systems and computers (pp. 1186–1190)
Godrich, H., Haimovich, A. M., & Blum, R. S. (2010b). Target localization accuracy gain in MIMO radar-based systems. IEEE Transactions on Information Theory, 56(6), 2783–2803.
Gorji, A. A., Tharmarasa, R., & Kirubarajan, T. (2013). Widely separated MIMO versus multistatic radars for target localization and tracking. IEEE Transactions on Aerospace and Electronic Systems, 49(4), 2179–2194.
Hack, D. E., Patton, L. K., Himed, B., & Saville, M. A. (2014). Detection in passive MIMO radar networks. IEEE Transactions on Signal Processing, 62(11), 2999–3012.
Haimovich, A. M., Blum, R. S., & Cimini, L. J. (2008). MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 25(1), 116–129.
He, Q., Blum, R. S., & Haimovich, A. M. (2010a). Noncoherent MIMO radar for location and velocity estimation: More antennas means better performance. IEEE Transactions on Signal Processing, 58(7), 3661–3680.
He, Q., Lehmann, N. H., Blum, R. S., & Haimovich, A. M. (2010b). MIMO radar moving target detection in homogeneous clutter. IEEE Transactions on Aerospace and Electronic Systems, 46(3), 1290–1301.
John, D. G., Blair, W. D., & Yaakov, B. S. (2013). IMM estimators with unbiased mixing for tracking targets performing coordinated turns. In Proceedings of the 2013 IEEE aerospace conference (pp. 1–10)
Liao, B., & Chan, S. C. (2015). Direction finding in MIMO radar with unknown transmitter and/or receiver gains and phases. Multidimensional Systems and Signal Processing, 1–17. Springer. doi:10.1007/s11045-015-0368-x.
Li, X. R., & Jikov, V. P. (2003). Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1333–1364.
Lin, Z. P. (1998). Feedback stabilizability of MIMO n-D linear systems. Multidimensional Systems and Signal Processing, 9(2), 149–172.
Li, J., & Stoica, P. (2007). MIMO radar with collocated antennas. IEEE Signal Processing Magazine, 24(5), 106–114.
Li, J. F., & Zhang, X. F. (2015). Sparse representation-based joint angle and Doppler frequency estimation for MIMO radar. Multidimensional Systems and Signal Processing, 26(1), 179–192.
Matsuzaki, T., Kameda, H., Tsujimichi, S., & Kosuge, Y. (2000). Maneuvering target tracking using constant velocity and constant angular velocity model. In 2000 IEEE international conference on systems, man, and cybernetics (Vol. 5, pp. 3230–3234).
Mehrotra, K., & Mahapatra, P. R. (1997). A jerk model for tracking highly maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 33(4), 1094–1105.
Niu, R., Blum, R. S., Varshney, P. K., & Drozd, A. L. (2009). Target tracking in widely separated non-coherent multiple-input multiple-output radar systems. In 2009 Conference record of the forty-third asilomar conference on signals, systems and computers (pp. 1181–1185)
Niu, R., Blum, R. S., Varshney, P. K., & Drozd, A. L. (2012). Target localization and tracking in noncoherent multiple-input multiple-output radar systems. IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1466–1489.
Orton, M., & Fitzgerald, W. (2002). A Bayesian approach to tracking multiple targets using sensor arrays and particle filters. IEEE Transactions on Signal Processing, 50(2), 216–223.
Schon, T., Gustafsson, F., & Nordlund, P. J. (2005). Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 53(7), 2279–2289.
Steven, R., & Stephen, R. (2010). The near constant acceleration Gaussian process kernel for tracking. IEEE Signal Processing Letters, 17(8), 707–710.
Sworder, D. D., Kent, T., Vojak, R., & Hutchins, R. G. (1995). Renewal models for maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 31, 138–150.
Tajer, A., Jajamovich, G. H., Wang, X. D., & Moustakides, G. V. (2010). Optimal joint target detection and parameter estimation by MIMO radar. IEEE Journal of Selected Topics in Signal Processing, 4(1), 127–145.
Yang, J., & Ji, H. (2012). A novel track maintenance algorithm for PHD/CPHD filter. Signal Processing, 92(10), 2371–2380.
Zhong, X. H., & Premkumar, A. B. (2012). Particle filtering approaches for multiple acoustic source detection and 2-D direction of arrival estimation using a single acoustic vector sensor. IEEE Transactions on Signal Processing, 60(9), 4719–4733.
Zhuang, S. N., & Zhu, X. H. (2013). Improved design of unimodular waveforms for MIMO radar. Multidimensional Systems and Signal Processing, 24(3), 447–456.
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant No. 61101172, 61371184 and 61301262) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. ZYGX2014J021).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hu, J., Chen, H., Li, Y. et al. Moving target parameter estimation for MIMO radar based on the improved particle filter. Multidim Syst Sign Process 29, 1–17 (2018). https://doi.org/10.1007/s11045-016-0447-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-016-0447-7