Skip to main content
Log in

Spectrum blind reconstruction and direction of arrival estimation of multi-band signals at sub-Nyquist sampling rates

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper we consider the problem of spectrum blind reconstruction (SBR) and direction of arrival (DOA) estimation of constituent sources of a disjoint multi-band signal (MBS) at sub-Nyquist sampling rates. Transformation of the problem into frequency domain indicates that the steering vector is a function of both the carrier frequency and its corresponding DOA. Employing the existing two dimensional frequency-DOA search algorithms suffers from the drawbacks of increased computational complexity and ambiguity issues. To overcome these drawbacks, in this paper we propose a simple modification to the receiver architecture by introducing an additional delay channel at every sensor. Estimation algorithms based on ESPRIT is then employed to estimate the carrier frequencies, while MUSIC algorithm is employed to estimate their corresponding DOAs. Using the knowledge of both these parameters, the MBS spectrum is then reconstructed. A two-dimensional iterative grid refinement algorithm is also described to further improve the estimation accuracy in the presence of noise. Identifiability issues are addressed and the conditions for unique identifiability are discussed. Furthermore, by assuming a two dimensional uniform array the advantages of the proposed approach in terms of identifiability is also provided. We further show that an \(M \ge N+1\) sensors and an overall sampling rate of at least \(2(N+1)B\) would be sufficient to achieve SBR and DOA estimation of an MBS comprising of N disjoint bands each of maximal bandwidth B. Numerical simulations are finally presented which verifies the validity of the proposed approach and compares the performance against appropriate bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Because of the assumption A2, X(f) has N information bands. However if x(t) is assumed to be a real-valued signal instead of complex-valued signal then X(f) shall have 2N bands.

References

  • Ariananda, D. D., & Leus, G. (2013). Compressive joint angular-frequency power spectrum estimation. In Proceedings of the 21st European Signal Processing Conference (EUSIPCO), 2013, IEEE, pp. 1–5.

  • Chen, J., & Huo, X. (2006). Theoretical results on sparse representations of multiple-measurement vectors. IEEE Transactions on Signal Processing, 54(12), 4634–4643.

    Article  MATH  Google Scholar 

  • Cotter, S. F., Rao, B. D., Engan, K., & Kreutz-Delgado, K. (2005). Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Transactions on Signal Processing, 53(7), 2477–2488.

    Article  MathSciNet  MATH  Google Scholar 

  • Davenport, M. A., Laska, J. N., Treichler, J., & Baraniuk, R. G. (2012). The pros and cons of compressive sensing for wideband signal acquisition: Noise folding versus dynamic range. IEEE Transactions on Signal Processing, 60(9), 4628–4642.

    Article  MathSciNet  Google Scholar 

  • Davies, M. E., & Eldar, Y. C. (2012). Rank awareness in joint sparse recovery. IEEE Transactions on Information Theory, 58(2), 1135–1146.

    Article  MathSciNet  MATH  Google Scholar 

  • FCC. Spectrum policy task force report: Federal communications commission tech. rep. 02-135. [online], http://www.gov/edocspublic/attachmatch/DOC228542A1.pdf.

  • Fu, X., Sidiropoulos, N. D., Ma, W. -K., & Tranter, J. (2014). Blind spectra separation and direction finding for cognitive radio using temporal correlation-domain ESPRIT. In IEEE international conference on acoustics, speech and signal processing (ICASSP), 2014, IEEE, pp. 7749–7753.

  • Godara, L. C. (1997). Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proceedings of the IEEE, 85(8), 1195–1245.

    Article  Google Scholar 

  • Haardt, M., & Nossek, J. A. (1997). 3-d unitary ESPRIT for joint 2-D angle and carrier estimation. In IEEE international conference on acoustics, speech, and signal processing, 1997. ICASSP-97, Vol. 1, IEEE, pp. 255–258.

  • Herley, C., & Wong, P. W. (1999). Minimum rate sampling and reconstruction of signals with arbitrary frequency support. IEEE Transactions on Information Theory, 45(5), 1555–1564.

    Article  MathSciNet  MATH  Google Scholar 

  • Islam, M. H., Koh, C. L., Oh, S. W., Qing, X., Lai, Y. Y., Wang, C., Liang, Y.-C., Toh, B. E., Chin, F., & Tan, G. L. et al. (2008). Spectrum survey in singapore: Occupancy measurements and analyses. In: IEEE 3rd international conference on cognitive radio oriented wireless networks and communications, 2008. CrownCom 2008, pp. 1–7.

  • Jiang, T., Sidiropoulos, N. D., & ten Berge, J. M. (2001). Almost-sure identifiability of multidimensional harmonic retrieval. IEEE Transactions on Signal Processing, 49(9), 1849–1859.

    Article  MathSciNet  MATH  Google Scholar 

  • Kruskal, J. B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and its Applications, 18(2), 95–138.

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar, A. A., Razul, S. G., & See, C.-M. S. (2014). An efficient sub-nyquist receiver architecture for spectrum blind reconstruction and direction of arrival estimation. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), 2014, IEEE, pp. 6781–6785.

  • Kumar, A. A., Razul, S. G., See, C. (2013). Improved spectrum-blind reconstruction of multi-band signals. In IEEE international conference on acoustics, speech and signal processing (ICASSP), 2013, IEEE, pp. 5454–5458.

  • Lee, K., Bresler, Y., & Junge, M. (2012). Subspace methods for joint sparse recovery. IEEE Transactions on Information Theory, 58(6), 3613–3641.

    Article  MathSciNet  MATH  Google Scholar 

  • Lemma, A. N., Van Der Veen, A.-J., & Deprettere, E. F. (2003). Analysis of joint angle-frequency estimation using ESPRIT. IEEE Transactions on Signal Processing, 51(5), 1264–1283.

    Article  MathSciNet  MATH  Google Scholar 

  • Malioutov, D., Çetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.

    Article  MathSciNet  MATH  Google Scholar 

  • Mishali, M., & Eldar, Y. C. (2009). Blind multiband signal reconstruction: Compressed sensing for analog signals. IEEE Transactions on Signal Processing, 57(3), 993–1009.

    Article  MathSciNet  Google Scholar 

  • Mitola, J., & Maguire, G. Q, Jr. (1999). Cognitive radio: Making software radios more personal. IEEE on Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  • Moffet, A. (1968). Minimum-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 16(2), 172–175.

    Article  Google Scholar 

  • Pal, P., & Vaidyanathan, P. (2012). Nested arrays in two dimensions, part II: Application in two dimensional array processing. IEEE Transactions on Signal Processing, 60(9), 4706–4718.

    Article  MathSciNet  Google Scholar 

  • Patil, K., Prasad, R., & Skouby, K. (2011). A survey of worldwide spectrum occupancy measurement campaigns for cognitive radio. In IEEE international conference on devices and communications (ICDeCom), 2011, pp. 1–5.

  • Proakis, J. G. (1996). Digital signal processing: Principles, algorithms, and application-3/e.

  • Roy, R., & Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(7), 984–995.

    Article  MATH  Google Scholar 

  • Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  Google Scholar 

  • Sidiropoulos, N. D., & Liu, X. (2001). Identifiability results for blind beamforming in incoherent multipath with small delay spread. IEEE Transactions on Signal Processing, 49(1), 228–236.

    Article  Google Scholar 

  • Stoica, P., & Nehorai, A. (1990). Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech and Signal Processing, 38(10), 1783–1795.

    Article  MATH  Google Scholar 

  • Van der Veen, A.-J., Vanderveen, M. C., & Paulraj, A. (1998). Joint angle and delay estimation using shift-invariance techniques. IEEE Transactions on Signal Processing, 46(2), 405–418.

    Article  Google Scholar 

  • Venkataramani, R., & Bresler, Y. (2000). Perfect reconstruction formulas and bounds on aliasing error in sub-nyquist nonuniform sampling of multiband signals. IEEE Transactions on Information Theory, 46(6), 2173–2183.

    Article  MathSciNet  MATH  Google Scholar 

  • Xudong, W., Zhang, X., Li, J., & Bai, J. (2012). Improved ESPRIT method for joint direction-of-arrival and frequency estimation using multiple-delay output. International Journal of Antennas and Propagation. doi:10.1155/2012/309269

  • Xudong, W. (2010). Joint angle and frequency estimation using multiple-delay output based on ESPRIT. EURASIP Journal on Advances in Signal Processing. doi:10.1155/2010/358659.

  • Zoltowski, M. D., & Mathews, C. P. (1994). Real-time frequency and 2-D angle estimation with sub-nyquist spatio-temporal sampling. IEEE Transactions on Signal Processing, 42(10), 2781–2794.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Anil Kumar.

Appendix

Appendix

1.1 Proof of Proposition 1

To properly reconstruct X(f), for any \(m \in \mathbb {Z}\) and \(i = \{1,2,...,N\}\), \(S_i(f-mf_s-f_i) \bigcap S_i(f-(m+1)f_s-f_i) = \emptyset \) (see Fig. 2). Since the maximum bandwidth of the information band is B, this can be satisfied if and only if \(f_s \ge B\), which also implies \(L \le 1/BT\), thus proving the first condition. Now, if \(\text {krank}(\mathbf{A }_c(\tilde{\varvec{f}},\tilde{\varvec{\theta }})) > N\), then by Lee et al. (2012, Proposition 4.2)  it is guaranteed that the MUSIC spectrum shows null for steering vectors corresponding to \(\{f_i,\theta _i\}_{i = 1}^N\). We now prove the “only if” by contradiction. Assume this condition is satisfied and in addition to N nulls, MUSIC shows null corresponding to some \((f_k,\theta _k) \notin \{f_i,\theta _i\}_{i = 1}^N\). This implies that \((f_k,\theta _k)\) resides in the range space of \(\mathbf{A }_c(\tilde{\varvec{f}},\tilde{\varvec{\theta }})\). By the definition of the Kruskal rank, this is possible only if \(\text {krank}(\mathbf{A }_c(\tilde{\varvec{f}},\tilde{\varvec{\theta }})) \le N\) which is a contradiction. Hence by satisfying \(\text {krank}(\mathbf{A }_c(\tilde{\varvec{f}},\tilde{\varvec{\theta }})) > N\), MUSIC shows only N nulls corresponding to \(\{f_i,\theta _i\}_{i = 1}^N\), which completes the proof.\(\square \)

1.2 Proof of Theorem 1

The condition (26) ensures that the generators of the Vandermonde matrices \(\mathbf{A }_c^{l_{1}}({\varvec{f}},\tilde{\varvec{\theta }})\) and \(\mathbf{A }_c^{l_{2}}({\varvec{f}},\tilde{\varvec{\theta }})\) are unique, hence by the well known property of Vandermonde matrices, \(\mathbf{A }_c^{l_{1}}({\varvec{f}},\tilde{\varvec{\theta }})\) and \(\mathbf{A }_c^{l_{2}}({\varvec{f}},\tilde{\varvec{\theta }})\) are full rank as well as full Kruskal rank matrices (Sidiropoulos and Liu 2001, Lemma 2). Since \(NN_\theta > M_{1}\) and \(NN_\theta > M_{2}\), \(\text {Krank}(\mathbf{A }_c^{l_{1}}({\varvec{f}},\tilde{\varvec{\theta }})) = M_{1}\) and \(\text {Krank}(\mathbf{A }_c^{l_{1}}({\varvec{f}},\tilde{\varvec{\theta }})) = M_{2}\). Now, using the bound on the Krukal rank (Sidiropoulos and Liu 2001, Lemma 1), \(\text {Krank}(\mathbf{A }_c({\varvec{f}},\tilde{\varvec{\theta }})) = \text {Krank}(\mathbf{A }_c^{l_{1}}({\varvec{f}},\tilde{\varvec{\theta }}) \odot \mathbf{A }_c^{l_{2}}({\varvec{f}},\tilde{\varvec{\theta }})) \ge \text {min}(M_{1}+M_{2}-1,NN_\theta )\). Hence if \(M_{1}+M_{2}-1 > N\), \(\text {Krank}(\mathbf{A }_c({\varvec{f}},\tilde{\varvec{\theta }})) > N\).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anil Kumar, A., Razul, S.G. & See, CM.S. Spectrum blind reconstruction and direction of arrival estimation of multi-band signals at sub-Nyquist sampling rates. Multidim Syst Sign Process 29, 643–669 (2018). https://doi.org/10.1007/s11045-016-0455-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0455-7

Keywords

Navigation