Skip to main content
Log in

State-space formulation of 2-D frequency transformation in Fornasini–Marchesini second model

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a state-space formulation for the two-dimensional (2-D) frequency transformation in the Fornasini–Marchesini second (FM II) model. Specifically, by introducing some new state vectors, an equivalent description of the FM II model will be first established. Then based on this new description, a state-space formulation of the 2-D frequency transformation in the FM II model is derived by revealing the substantial input and output relations among the state vectors of the prototype filter, all-pass filters and the transformed filter. The resultant formulation owns an elegant and general expression, and can be viewed as a natural extension of its counterpart in the Roesser model. Furthermore, as one of the various possible applications of the proposed formulation, a 2-D zero-phase IIR filters design procedure will be shown, by which the desired 2-D zero-phase IIR filters can be constructed in a more flexible way to avoid the kind of image distortions caused by the nonlinear phase of the used filter. Three typical image processing examples as well as the computational complexity analysis will be given to show the effectiveness and efficiency of the proposed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agathoklis, P. (1993). The double bilinear transformation for 2-D systems in state-space description. IEEE Transactions on Signal Processing, 41(2), 994–996.

    Article  Google Scholar 

  • Agathoklis, P., & Kanellakis, A. (1992). Complex domain transformations for 2-D systems in state-space description. In Proceedings of the ISCAS (Vol. 2, pp. 710–713). San Diego, CA.

  • Ahn, C. K. (2014). \(l_2\)-\(l_\infty \) suppression of limit cycles in interfered two-dimensional digital filters: A Fornasini–Marchesini model case. IEEE Transactions on Circuits and Systems II, 61(8), 614–618.

    Article  Google Scholar 

  • Ahn, C. K., & Kar, H. (2015a). Expected power bound for two-dimensional digital filters in the Fornasini–Marchesini local state-space model. IEEE Signal Processing Letters, 22(8), 1065–1069.

    Article  Google Scholar 

  • Ahn, C. K., & Kar, H. (2015b). Passivity and finite-gain performance for two-dimensional digital filters: The FM LSS model case. IEEE Transactions on Circuits and Systems II, 62(9), 871–875.

    Article  Google Scholar 

  • Ahn, C. K., Shi, P., & Basin, M. V. (2015). Two-dimensional dissipative control and filtering for Roesser model. IEEE Transactions on Automatic Control, 60(7), 1745–1759.

    Article  MathSciNet  MATH  Google Scholar 

  • Ahn, C. K., Wu, L., & Shi, P. (2016). Stochastic stability analysis for 2-D Roesser systems with multiplicative noise. Automatica, 69, 356–363.

    Article  MathSciNet  MATH  Google Scholar 

  • Chakrabarti, S., & Mitra, S. K. (1977). Design of two-dimensional digital filters via spectral transformations. Proceedings of the IEEE, 65(6), 905–914.

    Article  Google Scholar 

  • Constantinides, A. G. (1970). Spectral transformations for digital filters. Proceedings of the Institute Electrical Engineers, 117(8), 1585–1590.

    Article  Google Scholar 

  • Doan, M. L., Nguyen, T. T., Lin, Z., & Xu, L. (2015). Notes on minimal realizations of multidimensional systems. Multidimensional Systems and Signal Processing, 26(2), 519–553.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudgeon, D. E., & Mersereau, R. M. (1984). Multidimensional Digital Signal Processing. Englewood Cliffs, NJ: Prentice Hall Inc.

    MATH  Google Scholar 

  • Fisher, R. B., Perkins, S., Walker, A., & Wolfart, E. (1996). HIPR: Hypermedia Image Processing Reference. Chichester: Wiley.

    Google Scholar 

  • Fornasini, E., & Marchesini, G. (1978). Double-indexed dynamical system: State-space model and structural properties. Mathematical Systems Theory, 12(1), 59–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2010). Digital image processing (3rd ed.). Upper Saddle River, NJ: Pearson Education Inc.

    Google Scholar 

  • Hinamoto, T., Doi, A., & Muneyasu, M. (1997). 2-D adaptive state-space filters based on the Fornasini–Marchesini second model. IEEE Transaction on Circuits and Systems II, 44(8), 667–670.

    Article  MATH  Google Scholar 

  • Hinamoto, T., Hamanaka, T., & Maekawa, S. (1988). A generalized study on the synthesis of 2-D state-space digital filters with minimum roundoff noise. IEEE Transactions on Circuits and Systems, 35(8), 1037–1042.

    Article  MathSciNet  Google Scholar 

  • Hinamoto, T., Hamanaka, T., & Maekawa, S. (1990). Synthesis of 2-D state-space digital filters with low sensitivity based on the Fornasini–Marchesini model. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(9), 1587–1594.

    Article  MATH  Google Scholar 

  • Hinamoto, T., & Muneyasu, M. (1992). Image processing by two-dimensional recursive filters using the Fornasini–Marchesini model. Electronics and Communications in Japan, 75(5), 60–68.

    Article  Google Scholar 

  • Huang, T., Burnett, J., & Deczky, A. (1975). The importance of phase in image processing filters. IEEE Transactions on Acoustics, Speech and Signal Processing, 23(6), 529–542.

    Article  Google Scholar 

  • Kayran, A., & King, R. (1983). Design of recursive and nonrecursive fan filters with complex transformations. IEEE Transactions on Circuits and Systems, 30(12), 849–857.

    Article  Google Scholar 

  • Koshita, S., & Kawamata, M. (2004). State-space formulation of frequency transformation for 2-D digital filters. IEEE Signal Processing Letters, 11(10), 784–787.

    Article  Google Scholar 

  • Koshita, S., & Kawamata, M. (2005). Invariance of second-order modes under frequency transformation in 2-D separable denominator digital filters. Multidimensional Systems and Signal Processing, 16(3), 305–333.

    Article  MathSciNet  MATH  Google Scholar 

  • Lancaster, P., & Tismenetsky, M. (1985). The theory of matrices (2nd ed.). New York: Academic Press.

    MATH  Google Scholar 

  • Lu, W.-S., & Antoniou, A. (1986). Synthesis of 2-D state-space fixed-point digital-filter structures with minimum roundoff noise. IEEE Transactions on Circuits and Systems, 33(10), 965–973.

    Article  MATH  Google Scholar 

  • Lu, W.-S., & Antoniou, A. (1992). Two-dimensional digital filters. New York, NY: Marcel Dekker Inc.

    MATH  Google Scholar 

  • Mullis, C. T., & Roberts, R. A. (1976). Roundoff noise in digital filters: Frequency transformations and invariants. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(6), 538–550.

    Article  MathSciNet  Google Scholar 

  • Muneyasu, M., Tsujii, S., & Hinamoto, T. (1994). A 2-D IIR neural hybrid filter for image processing. Electronics and Communications in Japan, 77(2), 75–84.

    Article  Google Scholar 

  • Nguyen, T. T., Xu, L., Lin, Z., & Tay, D. B. H. (2016). On minimal realizations of first-degree 3D systems with separable denominators. Multidimensional Systems and Signal Processing. doi:10.1007/s11045-016-0405-4.

  • Ober, R. J., Lai, X., Lin, Z., & Ward, E. S. (2005). State space realization of a three-dimensional image set with application to noise reduction of fluorescent microscopy images of cells. Multidimensional Systems and Signal Processing, 16(1), 7–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Ooba, T. (2013). Asymptotic stability of two-dimensional discrete systems with saturation nonlinearities. IEEE Transaction on Circuits and Systems I, 60(1), 178–188.

    Article  MathSciNet  Google Scholar 

  • Oppenheim, A., & Lim, J. (1981). The importance of phase in signals. Proceedings of the IEEE, 69(5), 529–541.

    Article  Google Scholar 

  • Pendergrass, N. A., Mitra, S. K., & Jury, E. I. (1976). Spectral transformations for two-dimensional digital filters. IEEE Transactions on Circuits and Systems, 23(1), 26–35.

    Article  MathSciNet  Google Scholar 

  • Pratt, W. K. (1978). Digital image processing. New York: Wiley.

    MATH  Google Scholar 

  • Roesser, R. P. (1975). A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, 20(1), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Shanks, J. L., Treitel, S., & Justice, J. H. (1972). Stability and synthesis of two-dimensional recursive filters. IEEE Transactions on Audio and Electroacoustics, 20(2), 115–128.

    Article  Google Scholar 

  • Srivastava, V. K. & Ray, G. C. (2000). Design of 2D-multiple notch filter and its application in reducing blocking artifact from DCT coded image. In Proceedings of the Annual EMBS (Vol. 4, pp. 2829–2833).

  • Sumanasena, B., Dewasurendra, D. A., & Bauer, P. H. (2010). Stability of distributed 3-D systems implemented on grid sensor networks. IEEE Transactions on Signal Processing, 58(8), 4447–4453.

    Article  MathSciNet  Google Scholar 

  • Tian, Y., Zhang, F., Yan, S., & Xu., L. (2012). Invariance of second-order modes of 2-D digital filters under 2-D frequency transformation. In Proceedings of the ICARCV 2012 (pp. 1285 –1289). Guangzhou, China.

  • Tseng, C.-C., & Lee, S. -L. (2013). Design of two-dimensional notch filter using bandpass filter and fractional delay filter. In Proceedings of the ISCAS (pp. 89–92). Beijing, China.

  • Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Xu, L., Fan, H., Lin, Z., & Bose, N. K. (2008). A direct-construction approach to multidimensional realization and LFR uncertainty modeling. Multidimensional Systems and Signal Processing, 19(3–4), 323–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, L., Fan, H., Lin, Z., & Xiao, Y. (2011). Coefficient-dependent direct-construction approach to realization of multidimensional systems in Roesser model. Multidimensional Systems and Signal Processing, 22(1–3), 97–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, L., Wu, L., Wu, Q., Lin, Z., & Xiao, Y. (2005). On realization of 2D discrete systems by Fornasini–Marchesini model. International Journal of Control, Automation, and Systems, 3(4), 631–639.

    Google Scholar 

  • Xu, L., Wu, Q., Lin, Z., & Xiao, Y. (2007). A new constructive procedure for 2-D coprime realization in Fornasini–Marchesini model. IEEE Transaction on Circuits and Systems I, 54(9), 2061–2069.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, L., & Yan, S. (2010). A new elementary operation approach to multidimensional realization and LFR uncertainty modeling: The SISO case. Multidimensional Systems and Signal Processing, 21(4), 343–372.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, L., Yan, S., Lin, Z., & Matsushita, S. (2012). A new elementary operation approach to multidimensional realization and LFR uncertainty modeling: The MIMO case. IEEE Transactions on Circuits and Systems I, 59(3), 638–651.

    Article  MathSciNet  Google Scholar 

  • Yan, S., Shiratori, N., Shieh, H.-J., & Xu, L. (2011). A general state-space representation of n-variable bilinear transformation. Signal Processing, 91, 185–190.

    Article  MATH  Google Scholar 

  • Yan, S., Shiratori, N., & Xu, L. (2010). Simple state-space formulations of 2-D frequency transformation and double bilinear transformation. Multidimensional Systems and Signal Processing, 21(1), 3–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, S., Sun, L., & Xu, L. (2015). 2-D zero-phase IIR notch filters design based on state-space representation of 2-D frequency transformation. In Proceedings of the ISCAS (pp. 2369–2372). Lisbon, Portugal.

  • Yan, S., Wei, Y., Xu, L., & Zhao, Q. -L. (2013). State-space formulation of 2-D frequency transformation base on Fornasini–Marchesini second model. In Proceedings of the ICICS. Tainan, Taiwan.

  • Yan, S., Xu, L., & Anazawa, Y. (2007). A two-stage approach to the establishment of state-space formulation of 2-D frequency transformation. IEEE Signal Processing Letters, 14(12), 960–963.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Yan.

Additional information

Some preliminary results of this paper were presented in ICICS 2013 (Yan et al. 2013) and ISCAS 2015 (Yan et al. 2015), respectively. This work was partly supported by the National Natural Science Foundation of China (Nos. 61374160, 61104122), the Fundamental Research Funds for the Central Universities (lzujbky-2016-136), and the Japan Society for the Promotion of Science (JSPS.KAKENHI15K06072).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Sun, L., Xu, L. et al. State-space formulation of 2-D frequency transformation in Fornasini–Marchesini second model. Multidim Syst Sign Process 29, 361–383 (2018). https://doi.org/10.1007/s11045-016-0469-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0469-1

Keywords

Navigation