Skip to main content
Log in

Smoothing of adaptive eigenvector extraction in nested orthogonal complement structure with minimum disturbance principle

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

For adaptive extraction of generalized eigensubspace, Nguyen, Takahashi and Yamada proposed a scheme for solving generalized Hermitian eigenvalue problem based on nested orthogonal complement structure. This scheme can extract multiple generalized eigenvectors by combining with any algorithm designed for estimation of the first minor generalized eigenvector. In this paper, we carefully analyse the effect of a discontinuous function employed in the scheme, and show that the discontinuous function can cause unsmooth changes of the estimates by the scheme in its adaptive implementation. To remedy the weakness, we newly introduce a projection step, for smoothing, without increasing the order of the computational complexity. Numerical experiments show that the learning curves of the non-first generalized eigenvectors are improved drastically through the proposed smoothing even when the original scheme results in unexpected performance degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Precisely, this means the coordinate system defined by the column vectors of \({\varvec{\perp }_i}\in {\mathbb {C}}^{ N \times (N-i+1) }\).

  2. Obviously the larger \({\hat{\theta }}\) saves more computational cost and the smaller \({\hat{\theta }}\) prevents more from unsmooth changes of the estimate. A reasonable first choice would be \( {\hat{\theta }} = \pi /2\).

  3. The performance of the combination of Scheme 2A and Example 1(b) was reported at IEEE ICASSP 2016 (Kakimoto et al. 2016).

References

  • Attallah, S., & Abed-Meraim, K. (2008). A fast adaptive algorithm for the generalized symmetric eigenvalue problem. IEEE Signal Processing Letters, 15, 797–800.

    Article  Google Scholar 

  • Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Muller, K. R. (2008). Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine, 25(1), 41–56.

    Article  Google Scholar 

  • Blossier, B., Della Morte, M., Von Hippel, G., Mendes, T., Sommer, R., ALPHA collaboration, et al. (2009). On the generalized eigenvalue method for energies and matrix elements in lattice field theory. Journal of High Energy Physics, 2009(04), 094.

  • Chang, C., Ding, Z., Yau, S. F., & Chan, F. H. (2000). A matrix-pencil approach to blind separation of colored nonstationary signals. IEEE Transactions on Signal Processing, 48(3), 900–907.

    Article  Google Scholar 

  • Chen, H., Jiang, G., & Yoshihira, K. (2007). Failure detection in large-scale internet services by principal subspace mapping. IEEE Transactions on Knowledge and Data Engineering, 19(10), 1308–1320.

    Article  Google Scholar 

  • Chen, T., Hua, Y., & Yan, W. Y. (1998). Global convergence of Oja’s subspace algorithm for principal component extraction. IEEE Transactions on Neural Networks, 9(1), 58–67.

  • Choi, S., Choi, J., Im, H. J., & Choi, B. (2002). A novel adaptive beamforming algorithm for antenna array cdma systems with strong interferers. IEEE Transactions on Vehicular Technology, 51(5), 808–816.

    Article  Google Scholar 

  • Chouvardas, S., Kopsinis, Y., & Theodoridis, S. (2015). Robust subspace tracking with missing entries: The set-theoretic approach. IEEE Transactions on Signal Processing, 63(19), 5060–5070.

    Article  MathSciNet  Google Scholar 

  • Fukunaga, K. (1990). Introduction to statistical pattern recognition. San Diego, CA: Academic.

    MATH  Google Scholar 

  • Hager, W. W. (1989). Updating the inverse of a matrix. SIAM Review, 31(2), 221–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Haykin, S. (1996). Adaptive filter theory (3rd ed.). Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Kakimoto, K., Kitahara, D., Yamagishi, M., & Yamada, I. (2016). Stabilization of adaptive eigenvector extraction by continuation in nested orthogonal complement structure. In: IEEE International conference on acoustics, speech and signal processing (ICASSP) (pp. 4189–4193).

  • Laub, A. (1979). A schur method for solving algebraic riccati equations. IEEE Transactions on Automatic Control, 24(6), 913–921.

    Article  MathSciNet  MATH  Google Scholar 

  • Luenberger, D. G. (1969). Optimization by vector space methods. New York: Wiley.

    MATH  Google Scholar 

  • Lüscher, M., & Wolff, U. (1990). How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation. Nuclear Physics B, 339(1), 222–252.

    Article  MathSciNet  Google Scholar 

  • Misono, M., & Yamada, I. (2008). An efficient adaptive minor subspace extraction using exact nested orthogonal complement structure. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 91(8), 1867–1874.

    Article  Google Scholar 

  • Morgan, D. R. (2003). Downlink adaptive array algorithms for cellular mobile communications. IEEE Transactions on Communications, 51(3), 476–488.

    Article  Google Scholar 

  • Morgan, D. R. (2004). Adaptive algorithms for solving generalized eigenvalue signal enhancement problems. Signal Processing, 84(6), 957–968.

    Article  MATH  Google Scholar 

  • Nastar, C., & Ayache, N. (1996). Frequency-based nonrigid motion analysis: Application to four dimensional medical images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(11), 1067–1079.

    Article  Google Scholar 

  • Nguyen, T. D., Takahashi, N., & Yamada, I. (2013). An adaptive extraction of generalized eigensubspace by using exact nested orthogonal complement structure. Multidimensional Systems and Signal Processing, 24(3), 457–483.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen, T. D., & Yamada, I. (2013). Adaptive normalized quasi-newton algorithms for extraction of generalized eigen-pairs and their convergence analysis. IEEE Transactions on Signal Processing, 61(6), 1404–1418.

    Article  MathSciNet  Google Scholar 

  • Niyogi, X. (2004). Locality preserving projections. In Neural information processing systems (Vol. 16, p. 153). MIT.

  • Pappas, T., Laub, A., & Sandell, N. (1980). On the numerical solution of the discrete-time algebraic riccati equation. IEEE Transactions on Automatic Control, 25(4), 631–641.

    Article  MathSciNet  MATH  Google Scholar 

  • Parlett, B. N. (1980). The symmetric eigenvalue problem. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Shahbazpanahi, S., Gershman, A. B., Luo, Z. Q., & Wong, K. M. (2003). Robust adaptive beamforming for general-rank signal models. IEEE Transactions on Signal Processing, 51(9), 2257–2269.

    Article  Google Scholar 

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  • Tanaka, T. (2009). Fast generalized eigenvector tracking based on the power method. IEEE Signal Processing Letters, 16(11), 969–972.

    Article  Google Scholar 

  • Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415–1442.

    Article  Google Scholar 

  • Wong, T. F., Lok, T. M., Lehnert, J. S., & Zoltowski, M. D. (1998). A linear receiver for direct-sequence spread-spectrum multiple-access systems with antenna arrays and blind adaptation. IEEE Transactions on Information Theory, 44(2), 659–676.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, B. (1995). Projection approximation subspace tracking. IEEE Transactions on Signal Processing, 43(1), 95–107.

    Article  Google Scholar 

  • Yang, J., Xi, H., Yang, F., & Zhao, Y. (2006). RLS-based adaptive algorithms for generalized eigen-decomposition. IEEE Transactions on Signal Processing, 54(4), 1177–1188.

    Article  MATH  Google Scholar 

  • Yosida, K. (1980). Functional analysis (6th ed.). Berlin: Springer.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tuan Duong Nguyen (NTT Communications) for fruitful discussions. This work was supported in part by JSPS Grants-in-Aid (15K13986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Yamada.

Appendices

Appendix 1: Inversions of matrices \(\varvec{B}^{(i)}\) and \(\varvec{A}^{(i)}\)

Proposition A

The matrix \(\varvec{Q}^{(i+1)}_{\varvec{B}}:= (\varvec{B}^{(i+1)})^{-1}\) can be expressed in terms of \(\varvec{Q}^{(i)}_{\varvec{B}}(k) := (\varvec{B}^{(i)}(k))^{-1}\) as

$$\begin{aligned} \varvec{Q}_{\varvec{B}}^{(i+1)} = \left( \varvec{U}_{\perp }^{(i)} \right) ^H \varvec{Q}_{\varvec{B}}^{(i)} \varvec{U}_{\perp }^{(i)} -\left( \varvec{U}_{\perp }^{(i)} \right) ^H \varvec{u}_1^{(i)} \left( \varvec{u}_1^{(i)}\right) ^H \varvec{U}_{\perp }^{(i)}. \end{aligned}$$
(43)

Similarly, \( \varvec{Q}^{(i+1)}_{\varvec{A}}(k) := (\varvec{A}^{(i+1)})^{-1}\) can be expressed in terms of \(\varvec{Q}^{(i)}_{\varvec{A}}:=(\varvec{A}^{(i)})^{-1}\) as

$$\begin{aligned} \varvec{Q}_{\varvec{A}}^{(i+1)}&= \left( \varvec{U}_{\perp }^{(i)}\right) ^H \varvec{Q}_{\varvec{A}}^{(i)} \varvec{U}_{\perp }^{(i)} -\left( \varvec{U}_{\perp }^{(i)} \right) ^H \frac{\varvec{Q}_{\varvec{A}}^{(i)}\bar{\varvec{u}}_1^{(i)} \left( \varvec{Q}_{\varvec{A}}^{(i)}\bar{\varvec{u}}_1^{(i)}\right) ^H }{\left( \bar{\varvec{u}}_1^{(i)}\right) ^H\varvec{Q}_{\varvec{A}}^{(i)}\bar{\varvec{u}}_1^{(i)}} \varvec{U}_{\perp }^{(i)}. \end{aligned}$$
(44)

In the following, we show the proof of (44). For a proof of (43), see Corollary 2 in Nguyen et al. (2013).

Proof

Since \( \varvec{U}^{(i)} := \begin{bmatrix} \bar{\varvec{u}}_1^{(i)}&\varvec{U}^{(i)}_{\perp } \end{bmatrix}\) is a unitary matrix from the definition of the \(\varvec{B}^{(i)}\)-orthogonal complement matrix (see (7)), \(\bar{\varvec{u}}_1^{(i)}\in {\mathbb {C}}^{N-i+1}\) and \(\varvec{U}^{(i)}_{\perp } \in {\mathbb {C}}^{(N-i+1)\times (N-i)} \) satisfy

$$\begin{aligned} \bar{\varvec{u}}_1^{(i)} \left( \bar{\varvec{u}}_1^{(i)}\right) ^H + \varvec{U}^{(i)}_{\perp }\left( \varvec{U}^{(i)}_{\perp }\right) ^H = \varvec{I}_{N-i+1} . \end{aligned}$$
(45)

Then,

$$\begin{aligned}&\varvec{A}^{(i+1)}\varvec{Q}^{(i+1)}_{\varvec{A}}\\&\quad =(\varvec{U}^{(i)})^{H}\varvec{A}^{(i)}\varvec{U}^{(i)}(\varvec{U}^{(i)})^{H}\left( \varvec{I}_{N-i+1}-\frac{\varvec{Q}_A^{(i)}\bar{\varvec{u}}_1^{(i)}(\bar{\varvec{u}}_1^{(i)})^H}{(\bar{\varvec{u}}_1^{(i)})^H \varvec{Q}_A^{(i)}\bar{\varvec{u}}_1^{(i)}}\right) \varvec{Q}_A^{(i)}\varvec{U}^{(i)} \\&\quad =(\varvec{U}^{(i)})^{H}\varvec{A}^{(i)}\left( \varvec{I}_{N-i+1}-\bar{\varvec{u}}_1^{(i)}(\bar{\varvec{u}}_1^{(i)})^H\right) \left( \varvec{I}_{N-i+1}-\frac{\varvec{Q}_A^{(i)}\bar{\varvec{u}}_1^{(i)}(\bar{\varvec{u}}_1^{(i)})^H}{(\bar{\varvec{u}}_1^{(i)})^H \varvec{Q}_A^{(i)}\bar{\varvec{u}}_1^{(i)}}\right) \varvec{Q}_A^{(i)}\varvec{U}^{(i)} \\&\qquad \qquad \qquad \quad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (\mathrm {from} \,\, (45)) \\&\quad =(\varvec{U}^{(i)})^{H}\varvec{A}^{(i)}\left( \varvec{I}_{N-i+1}-\frac{\varvec{Q}_A^{(i)}\bar{\varvec{u}}_1^{(i)}(\bar{\varvec{u}}_1^{(i)})^H}{(\bar{\varvec{u}}_1^{(i)})^H \varvec{Q}_A^{(i)}\bar{\varvec{u}}_1^{(i)}}\right) \varvec{Q}_A^{(i)}\varvec{U}^{(i)} \\&\quad =\varvec{I}_{N-i} - \frac{(\varvec{U}^{(i)})^{H}\bar{\varvec{u}}_1^{(i)}(\bar{\varvec{u}}_1^{(i)})^H\varvec{Q}_A^{(i)}\varvec{U}^{(i)}}{(\bar{\varvec{u}}_1^{(i)})^H \varvec{Q}_A^{(i)}\bar{\varvec{u}}_1^{(i)}} \\&\qquad \qquad \qquad (\, \varvec{A}^{(i)} \varvec{Q}_A^{(i)} = \varvec{I}_{N-i+1}\quad \mathrm {and} \quad (\varvec{U}^{(i)})^H \varvec{U}^{(i)}=\varvec{I}_{N-i} \quad (\mathrm {see} \,\, (7)) \,) \\&\quad =\varvec{I}_{N-i} - \frac{(\varvec{U}^{(i)})^{H}\left( \varvec{I}_{N-i+1} - \varvec{U}^{(i)}(\varvec{U}^{(i)})^H\right) \varvec{Q}_A^{(i)}\varvec{U}^{(i)}}{(\bar{\varvec{u}}_1^{(i)})^H \varvec{Q}_A^{(i)}\bar{\varvec{u}}_1^{(i)}}\\&\qquad \qquad \qquad \quad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (\mathrm {from} \,\, (45)) \\&\quad =\varvec{I}_{N-i} - \frac{(\varvec{U}^{(i)})^{H}\varvec{Q}_A^{(i)}\varvec{U}^{(i)} - (\varvec{U}^{(i)})^{H}\varvec{U}^{(i)}(\varvec{U}^{(i)})^{H}\varvec{Q}_A^{(i)}\varvec{U}^{(i)} }{(\bar{\varvec{u}}_1^{(i)})^H \varvec{Q}_A^{(i)}\bar{\varvec{u}}_1^{(i)}}\\&\quad =\varvec{I}_{N-i}. \end{aligned}$$

\(\square \)

Appendix 2: Proof of Lemma 1

Since Lemma 1(a) is obvious, we focus on the proof of Lemma 1(b). To show that \(\phi _N\) is discontinuous at any point \(\varvec{w}_0 := (\varvec{w}_{\mathrm{up}}^T, 0)^T \in {\mathcal {S}}_N \cap ({\mathbb {C}}^{N-1} \times \{0\})\) (note that \(\Vert \varvec{w}_{\mathrm{up}}\Vert =1\)), we show that for \(\epsilon _0 := 1\), \(\forall \delta > 0, \exists \varvec{w}\) s.t. \(\Vert \varvec{w} - \varvec{w}_0\Vert < \delta \) and \(\Vert \phi _N(\varvec{w})-\phi _N(\varvec{w}_0)\Vert _F \ge \epsilon _0 \), where \(\Vert \cdot \Vert _F \) stands for the Frobenius norm. For arbitrary fixed \(\delta >0\), define \(\varvec{w}(\delta ) \in {\mathcal {S}}_N\) as

$$\begin{aligned} \varvec{w}(\delta ) := \begin{pmatrix} \sqrt{1- w_{\mathrm{low}}^2} \varvec{w}_{\mathrm{up}} \\ -w_{\mathrm{low}} \end{pmatrix},\quad w_{\mathrm{low}}:= {\left\{ \begin{array}{ll} 1/2 ,&{} {\mathrm{if \ } } \delta >1 \mathrm{;}\\ \delta /2 ,&{} \mathrm{otherwise.} \end{array}\right. } \end{aligned}$$
(46)

Below, we show that \(\varvec{w}(\delta )\) satisfies \(\Vert \varvec{w}(\delta ) - \varvec{w}_0\Vert < \delta \) and \(\Vert \phi _N(\varvec{w}(\delta ))-\phi _N(\varvec{w}_0)\Vert _F > \epsilon _0 \). At first,

$$\begin{aligned} \Vert \varvec{w}(\delta )-\varvec{w}_0\Vert&= \left\| \begin{pmatrix} \left( \sqrt{1- w_{\mathrm{low}}^2} - 1\right) \varvec{w}_{\mathrm{up}} \\ -w_{\mathrm{low}} \end{pmatrix}\right\| \\&= \sqrt{(1-\sqrt{1- w_{\mathrm{low}}^2})^2\Vert \varvec{w}_{\mathrm{up}}\Vert ^2 + w_{\mathrm{low}} ^2}\\&=\sqrt{2(1-\sqrt{1-w_{\mathrm{low}}^2})}\\&<\sqrt{2(1-(1-w_{\mathrm{low}}^2))}\ \ (\because 0<1-w_{\mathrm{low}}^2<1)\\&=\sqrt{2}w_{\mathrm{low}} = {\left\{ \begin{array}{ll} \sqrt{2}/2 ,&{} {\mathrm{if \ } } \delta >1 \mathrm{;}\\ \sqrt{2}\delta /2 ,&{} \mathrm{otherwise.} \end{array}\right. } \\&<\delta \end{aligned}$$

Next,

$$\begin{aligned} \Vert \phi _N(\varvec{w}(\delta )) - \phi _N(\varvec{w}_0)\Vert _F&= \left\| \begin{bmatrix} w_{\mathrm{low}}\varvec{w}_{\mathrm{up}}\varvec{w}_{\mathrm{up}}^H \\ (-\theta (0)+\theta (-w_{\mathrm{low}})\sqrt{1- w_{\mathrm{low}}^2})\varvec{w}_{\mathrm{up}}^H \end{bmatrix}\right\| _F \\&>\left\| \begin{bmatrix} O_{(N-1) \times (N-1)} \\ (-1-\sqrt{1- w_{\mathrm{low}}^2})\varvec{w}_{\mathrm{up}}^H \end{bmatrix}\right\| _F \\&= 1+\sqrt{1- w_{\mathrm{low}}^2} > 1 = \epsilon _0. \end{aligned}$$

From the above discussion, \(\forall \delta >0\), \(\exists \varvec{w}\) s.t. \(\Vert \varvec{w} - \varvec{w}_0\Vert < \delta \) and \(\Vert \phi _N(\varvec{w}) - \phi _N(\varvec{w}_0)\Vert _F \ge \epsilon _0\). Thus the mapping \(\phi _N\) is discontinuous at \(\varvec{w}_0\). \(\square \)

Appendix 3: Proof of Proposition 1

  1. (i)

    The condition for the column vectors of \({\varvec{\perp }^{{\mathcal {I}}}_i}(k)\) to form a standard orthonormal basis of (span\((\{\varvec{u}_s^{(1)}(k)\}_{s=1}^{i-1})^{\perp }_{\langle \varvec{B} \rangle }\) is equivalent to

    $$\begin{aligned} ({\varvec{\perp }^{{\mathcal {I}}}_i}(k))^H {\varvec{\perp }}^{{\mathcal {I}}}_i(k) =\varvec{I}_{N-i+1} \end{aligned}$$
    (47)

    and

    $$\begin{aligned} ({\varvec{\perp }^{{\mathcal {I}}}_i}(k))^H\varvec{B} \varvec{u}_j^{(1)}(k) = 0 \quad \quad (j = 1,\ldots ,i-1). \end{aligned}$$
    (48)

    The relation (47) is verified as

    $$\begin{aligned} ({\varvec{\perp }^{{\mathcal {I}}}_i}(k))^H {\varvec{\perp }^{{\mathcal {I}}}_i}(k)&= \left( \prod _{s=1}^{i-1} \varvec{U}_{\perp }^{(s)}(k)\right) ^H \left( \prod _{s=1}^{i-1} \varvec{U}_{\perp }^{(s)}(k)\right) \\&=\left( \varvec{U}_{\perp }^{(i-1)}(k)\right) ^H \cdots \left( \varvec{U}_{\perp }^{(1)}(k)\right) ^H \left( \varvec{U}_{\perp }^{(1)}(k)\right) \cdots \left( \varvec{U}_{\perp }^{(i-1)}(k)\right) \\&= \varvec{I}_{N-i+1} \quad \quad \left( \mathrm {From}\,(7), \, \left( \varvec{U}_{\perp }^{(s)}(k)\right) ^H \varvec{U}_{\perp }^{(s)}(k) = \varvec{I}_{N-s}\right) . \end{aligned}$$

    The relation (49) is verified as, for \(j=1,\ldots ,i-1 \),

    $$\begin{aligned}&({\varvec{\perp }^{{\mathcal {I}}}_i}(k))^H\varvec{B} \varvec{u}_j^{(1)}(k) \\&\quad = \left( \prod _{s=1}^{i-1} \varvec{U}_{\perp }^{(s)}(k)\right) ^H \varvec{B} \left( \prod _{s=1}^{j-1} \varvec{U}_{\perp }^{(s)}\right) \varvec{u}_1^{(j)} (k)\\&\quad = \left( \varvec{U}_{\perp }^{(i-1)}(k)\right) ^H \cdots \left( \varvec{U}_{\perp }^{(1)}(k)\right) ^H \varvec{B} \left( \varvec{U}_{\perp }^{(1)}(k)\right) \cdots \left( \varvec{U}_{\perp }^{(j-1)}(k)\right) \varvec{u}_1^{(j)} (k)\\&\quad = \left( \varvec{U}_{\perp }^{(i-1)}(k)\right) ^H \cdots \left( \varvec{U}_{\perp }^{(j)}(k)\right) ^H \varvec{B}^{(j)}(k) \varvec{u}_1^{(j)}(k)\quad \left( \mathrm {From}\, (25) \right) \\&\quad =\varvec{0} \end{aligned}$$

    where the last equality holds by \(\varvec{U}^{(j)}_{\perp }(k) = \varvec{U}_{\perp [\varvec{B}^{(j)}(k)]}(\varvec{u}_1^{(j)}(k))\) and \(\left( \varvec{U}_{\perp }^{(j)}(k)\right) ^H \varvec{B}^{(j)}(k) \varvec{u}_1^{(j)}(k) = \varvec{0}\) (see (7), for the property of \(\varvec{B}^{(j)}(k)\)-orthogonal complement matrix).

  2. (ii)

    The projection of \(\varvec{z} \in {\mathbb {C}}^{N}\) onto \({\mathcal {R}}({\varvec{\perp }^{{\mathcal {I}}}_i}(k))\) is

    $$\begin{aligned} P_{{\mathcal {R}}({\varvec{\perp }^{{\mathcal {I}}}_i}(k))}(\varvec{z})&= {\varvec{\perp }^{{\mathcal {I}}}_i}(k)\left( ({\varvec{\perp }^{{\mathcal {I}}}_i}(k))^H {\varvec{\perp }}^{{\mathcal {I}}}_i(k) \right) ^{-1}\left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{z} \nonumber \\&={\varvec{\perp }^{{\mathcal {I}}}_i}(k)\left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{z} \quad \mathrm {( From \, (47) )}, \end{aligned}$$
    (49)

    where the first equality holds from the Normal equation [see Sect 3.6 in Luenberger (1969)].\(\square \)

Appendix 4: Proof of Proposition 2

From (25),

$$\begin{aligned}&\Vert {\varvec{\perp }^{{\mathcal {I}}}_i}(k) ({\varvec{\perp }^{{\mathcal {I}}}_i}(k) )^H \varvec{u}_i^{(1)}(k-1)\Vert _{\varvec{B}}\\&\quad = \sqrt{ \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k)( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) )^H \varvec{u}_i^{(1)}(k-1)\right) ^H \varvec{B}{\varvec{\perp }^{{\mathcal {I}}}_i}(k) ({\varvec{\perp }^{{\mathcal {I}}}_i}(k) )^H \varvec{u}_i^{(1)}(k-1)}\\&\quad = \sqrt{ \left( ({\varvec{\perp }^{{\mathcal {I}}}_i}(k) )^H \varvec{u}_i^{(1)}(k-1)\right) ^H ({\varvec{\perp }^{{\mathcal {I}}}_i}(k))^H \varvec{B}{\varvec{\perp }^{{\mathcal {I}}}_i}(k) ({\varvec{\perp }^{{\mathcal {I}}}_i}(k) )^H \varvec{u}_i^{(1)}(k-1)}\\&\quad = \sqrt{ \left( ({\varvec{\perp }^{{\mathcal {I}}}_i}(k) )^H \varvec{u}_i^{(1)}(k-1)\right) ^H \varvec{B}^{(i)}(k) ({\varvec{\perp }^{{\mathcal {I}}}_i}(k) )^H \varvec{u}_i^{(1)}(k-1)}\\&\quad =\Vert ( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) )^H \varvec{u}_i^{(1)}(k-1)\Vert _{\varvec{B}^{(i)}(k)} . \end{aligned}$$

Therefore,

$$\begin{aligned} \widetilde{\varvec{u}}^{(i)}_1(k-1) := \frac{ \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{u}_i^{(1)}(k-1) }{ \Vert {\varvec{\perp }^{{\mathcal {I}}}_i}(k) ({\varvec{\perp }^{{\mathcal {I}}}_i}(k) )^H \varvec{u}_i^{(1)}(k-1)\Vert _{\varvec{B}}}= \frac{ \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{u}_i^{(1)}(k-1) }{ \Vert \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{u}_i^{(1)}(k-1)\Vert _{\varvec{B}^{(i)}(k)} }. \end{aligned}$$

\(\square \)

Appendix 5: Computational complexity of steps in Scheme 2I

In this section, we evaluate the total computational complexity of Step 2b, Step 2c and Step 3 of Scheme 2I at time k. We first consider computational complexity of Step 2b and 2c for fixed i. In the following, we omit k for simplicity.

In Step 2b, we have to calculate \(\varvec{B}^{(i)}\varvec{u}_1^{(i)}\) to obtain \(\varvec{U}_{\perp }^{(i)}\). Therefore, Step 2b requires \((N-i+1)^2 + {\mathcal {O}} (N-i)\) multiplications. In Step 2c, we have to calculate \(\left( \varvec{U}_{\perp }^{(i)}\right) ^H\varvec{A}^{(i)} \varvec{U}_{\perp }^{(i)}\) and \(\left( \varvec{U}_{\perp }^{(i)}\right) ^H\varvec{B}^{(i)} \varvec{U}_{\perp }^{(i)}\). For a Hermitian matrix

$$\begin{aligned} \varvec{T} = \begin{bmatrix} \varvec{T}'&\varvec{t} \\ \varvec{t}^{H}&t \end{bmatrix}\text{, } \end{aligned}$$

\(\left( \varvec{U}^{(i)}_{\perp }\right) ^H \varvec{T} \varvec{U}^{(i)}_{\perp }\), is calculated as

$$\begin{aligned}&\left( \varvec{U}^{(i)}_{\perp }\right) ^H \varvec{T} \varvec{U}^{(i)}_{\perp } \nonumber \\&\quad =\begin{bmatrix}\varvec{I}_{N-i}-a\bar{\varvec{u}}^{(i)}_{\mathrm{up}}\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H , -b\bar{\varvec{u}}^{(s)}_{\mathrm{up}}\end{bmatrix} \begin{bmatrix} \varvec{T}'&\varvec{t} \nonumber \\ \varvec{t}^{H}&t \end{bmatrix}\begin{bmatrix}\varvec{I}_{N-i}-a\bar{\varvec{u}}^{(i)}_{\mathrm{up}}\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H \nonumber \\ -b\left( \bar{\varvec{u}}^{(s)}_{\mathrm{up}}\right) ^H\end{bmatrix}\nonumber \\&\qquad \qquad \qquad \qquad \qquad (\, \mathrm {where} \quad a =1/(1 + |{\bar{u}}_{\mathrm{low}}|) \quad \mathrm {and} \quad b = \theta ({\bar{u}}^{(i)}_{\mathrm{low}})\, )\nonumber \\&\quad =\varvec{T}' -a\bar{\varvec{u}}^{(i)}_{\mathrm{up}}\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H\varvec{T}' -a\varvec{T}'\bar{\varvec{u}}^{(i)}_{\mathrm{up}}\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H + a^2\bar{\varvec{u}}^{(i)}_{\mathrm{up}}\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H\varvec{T}'\bar{\varvec{u}}^{(i)}_{\mathrm{up}}\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H\nonumber \\&\qquad +ab(\varvec{t}^H\bar{\varvec{u}}^{(i)}_{\mathrm{up}})\bar{\varvec{u}}^{(i)}_{\mathrm{up}}\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H - b \varvec{t}\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H + ab(\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H\varvec{t})\bar{\varvec{u}}^{(i)}_{\mathrm{up}}\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H\nonumber \\&\qquad + b^2 t \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H \nonumber \\&= \varvec{T}' - (a\varvec{T}'\bar{\varvec{u}}^{(i)}_{\mathrm{up}} + b\varvec{t})\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H - \left( (a\varvec{T}'\bar{\varvec{u}}^{(i)}_{\mathrm{up}} + b\varvec{t})\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H \right) ^H\nonumber \\&\qquad \left( a^2\left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H \varvec{T}'\bar{\varvec{u}}^{(i)}_{\mathrm{up}} + b^2t + 2ab\varvec{t}^H\bar{\varvec{u}}^{(i)}_{\mathrm{up}} \right) \bar{\varvec{u}}^{(i)}_{\mathrm{up}} \left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}\right) ^H. \end{aligned}$$
(50)

The second term of (50) requires \(2(N-i)^2 + {\mathcal {O}}(N-i)\) multiplications. Since the third term (50) is the conjugate transpose of the second term, we can compute this term without additional multiplications. Moreover, since \( \varvec{T}'\bar{\varvec{u}}^{(i)}_{\mathrm{up}} \) is calculated in the second term, the fourth term requires only \((N-i)^2 + {\mathcal {O}}(N-i)\) multiplications. Then, the total computational complexity of \(\left( \varvec{U}^{(i)}_{\perp }\right) ^H \varvec{T} \varvec{U}^{(i)}_{\perp }\) is \(3(N-i)^2 + {\mathcal {O}}(N-i)\). Therefore, Step 2c requires \( 6(N-i)^2 + {\mathcal {O}}(N-i) \) multiplications and for fixed i, Step 2b, and Step 2c require \(7(N-i)^2 + {\mathcal {O}}(N-i)\) multiplications.

For fixed i, Step 3 requires \(i-1\) times multiplications of orthogonal complement matrices and a vector, then the computational complexity is \(2Ni-i^2 + {\mathcal {O}}(i)\) as mentioned in Sect. 3.4.

Table 1 Computational complexities of each steps of Scheme 2I at time k

Since Step 2b and 2c are performed for \(1\le i \le r-1\), the total computational complexity of them is \( 7N^2r - 7Nr^2 + 7r^3/6 + {\mathcal {O}}(Nr)\). Step 3 requires \(Nr^2 - r^3/6 + {\mathcal {O}}(Nr)\) when i moves 2 to r. Then, the total computational complexity of Step 2b, Step 2c and Step 3 of Scheme 2I is \(7N^2r - 6Nr^2 +2r^3 + {\mathcal {O}}(Nr)\). This is much larger than additional computational complexity \(Nr^2+{\mathcal {O}}(Nr)\) of Step 2a\(_+\), i.e., projection step (see Table 1).

Remark 3

(Computational complexity for Step 2a) In Step 2a, for instance, Example 1(a) requires \(3N^2r - 3Nr^2/2 +r^3/2 +{\mathcal {O}}(Nr)\) multiplications, and Example 1(b) requires \(5N^2r - 5Nr^2/2 +5r^3/6 +{\mathcal {O}}(Nr)\) multiplications.

Appendix 6: Algorithm 1: Combinations of incremental schemes and FMGEs

Algorithm 1

Initialization step:

Set \(k=0\), \(\{\varvec{u}_i^{(1)}(0)\}_{i=1}^{r} \subset {\mathbb {C}}^N\) arbitrarily as an initial estimate of a basis of generalized minor subspace (note that \(\{\varvec{u}_i^{(1)}(0)\}_{i=2}^{r}\) are used in the projection step of Scheme 2I and Scheme 3I) and, for [Example 1(b)], set \(\mu _i(0)\) as an initial estimate of generalized eingenvalues. For \(i=2,\ldots ,r\), set \(\varvec{u}_1^{(i)}(0) \in {\mathbb {C}}^{N-i+1}\) arbitrarily as an initial estimate of the first minor generalized eigenvector of the matrix pencil \((\varvec{A}^{(i)}, \varvec{B}^{(i)})\). Moreover, for Scheme 3I, set the threshold \({\hat{\theta }}\).

Iteration step:

Step1 \(k\leftarrow k+1\), \(i = 1\) and set \(\varvec{A}^{(1)}(k) = \varvec{A}\), \( \varvec{B}^{(1)}(k) = \varvec{B}\) and

[Example 1(a)] \(\varvec{Q}^{(1)}_{\varvec{B}}(k) := \varvec{B}^{-1}\) or [Example 1(b)] \(\varvec{Q}^{(1)}_{\varvec{A}}(k) := \varvec{A}^{-1}\).

Step2 For \(i = 1,\dots , r\),

\(\mathbf{a}_{+}.\) :

Set \(\widetilde{\varvec{u}}_1^{(i)}(k-1)\) as [Scheme 1I] \(\widetilde{\varvec{u}}_1^{(i)}(k-1) = \varvec{u}_1^{(i)}(k-1) \). [Scheme 2I]

$$\begin{aligned} \widetilde{\varvec{u}}^{(i)}_1(k-1):= {\left\{ \begin{array}{ll} \varvec{u}^{(1)}_1(k-1)\text{, } &{} i=1 \text{; }\\ \dfrac{ \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{u}_i^{(1)}(k-1) }{ \Vert \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{u}_i^{(1)}(k-1)\Vert _{\varvec{B}^{(i)}(k)} } \text{, }&{} i=2,\ldots ,r\mathrm{.} \end{array}\right. } \end{aligned}$$

[Scheme 3I] If \(i=1\), or, for \( i\ge 2\), \(\forall s\) (\(1\le s \le i-1\)) \(\mathrm {angle}({\bar{u}}_{\mathrm{low}}^{(s)}(k), {\bar{u}}_{\mathrm{low}}^{(s)}(k-1)) \le {\hat{\theta }}\),

$$\begin{aligned} \widetilde{\varvec{u}}_1^{(i)}(k-1) = \varvec{u}_1^{(i)}(k-1), \end{aligned}$$

otherwise

$$\begin{aligned} \widetilde{\varvec{u}}^{(i)}_1(k-1) = \frac{ \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{u}_i^{(1)}(k-1) }{ \Vert \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{u}_i^{(1)}(k-1)\Vert _{\varvec{B}^{(i)}(k)} }. \end{aligned}$$
a. :

Perform a single update of \(\mathrm {FMGE}(\varvec{A}^{(i)}(k),\varvec{B}^{(i)}(k))\) from \(\widetilde{\varvec{u}}^{(i)}_1(k-1)\) and denote its outcome by \(\varvec{u}^{(i)}_1(k)\). Calculate \( \varvec{u}^{(i)}_1(k)\) as [Example 1(a)]

$$\begin{aligned} \widehat{\varvec{u}}_1^{(i)}(k)&= \left( \frac{1}{\tau }\varvec{I}_{N-i+1} - \varvec{Q}^{(i)}_{\varvec{B}}(k)\varvec{A}^{(i)}(k) \right) \widetilde{\varvec{u}}^{(i)}_1(k-1) \nonumber \\ \varvec{u}_1^{(i)}(k)&=\frac{\widehat{\varvec{u}}_1^{(i)}(k)}{\Vert \widehat{\varvec{u}}_1^{(i)}(k) \Vert _{\varvec{B}^{(i)}(k)}} , \end{aligned}$$

or [Example 1(b)]

$$\begin{aligned} \eta _i(k)&= {\left\{ \begin{array}{ll} \eta _1\text{, } &{} i=1\mathrm{;}\\ \dfrac{2\mu _i(k-1)\eta _1}{\mu _1(k-1)(2+\eta _1)-\mu _i(k-1)\eta _1} \text{, }&{} i=2, \ldots , r \mathrm{,} \end{array}\right. } \nonumber \\ \widehat{\varvec{u}}_1^{(i)}(k)&= \widetilde{\varvec{u}}_1^{(i)}(k-1) + \eta _i(k) \, \Bigl [ \varvec{Q}_{\varvec{A}}^{(i)}(k)\varvec{B}^{(i)}(k) \widetilde{\varvec{u}}_1^{(i)}(k-1)\mu _i(k-1) \nonumber \\ \nonumber&\quad \qquad +(\widetilde{\varvec{u}}_1^{(i)}(k-1))^H\varvec{A}^{(i)}(k)\widetilde{\varvec{u}}_1^{(i)}(k-1)\widetilde{\varvec{u}}(k-1)\mu _i^{-1}(k-1)\\ {}&\qquad -2\widetilde{\varvec{u}}_1^{(i)}(k-1) \Bigl ], \nonumber \\ \varvec{u}_1^{(i)}(k)&=\frac{\widehat{\varvec{u}}_1^{(i)}(k) }{\Vert \widehat{\varvec{u}}_1^{(i)}(k) \Vert _{\varvec{B}^{(i)}(k)}},\nonumber \\ \mu _i(k)&= (1-\gamma )\mu _i(k-1) +\gamma (\varvec{u}_1^{(i)}(k))^H\varvec{A}^{(i)}(k)\varvec{u}_1^{(i)}(k), \end{aligned}$$
(51)

where \(\tau , \eta _i(k), \gamma >0\) are positive small stepsizes.

b. :

If \(i \not = r\), compute the \(\varvec{B}^{(i)}(k)\)-orthogonal complement matrix \(\varvec{U}_{\perp }^{(i)}(k)\) of \(\varvec{u}_1^{(i)}(k)\) by (5) as

$$\begin{aligned} \bar{\varvec{u}}_1^{(i)}(k)&= \frac{\varvec{B}^{(i)}(k)\varvec{u}_1^{(i)}(k)}{\Vert \varvec{B}^{(i)}(k)\varvec{u}_1^{(i)}(k)\Vert },\\ \varvec{U}_{\perp }^{(i)}(k)&=\begin{pmatrix} \varvec{I}_{N-i}-\frac{1}{1+|{\bar{u}}_{\mathrm{low}}^{(i)}(k)|} \bar{\varvec{u}}^{(i)}_{\mathrm{up}}(k) \left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}(k)\right) ^H \\ -\theta \left( {\bar{u}}^{(i)}_{\mathrm{low}}(k)\right) \left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}(k)\right) ^H \end{pmatrix}, \end{aligned}$$

where \(\Vert \cdot \Vert \) stands for the standard Euclidean norm, \(\bar{\varvec{u}}^{(i)}_{\mathrm{up}}(k) \in {\mathbb {C}}^{N-i} \) and \({\bar{u}}^{(i)}_{\mathrm{low}}(k) \in {\mathbb {C}} \) are respectively the first \((N-i)\) components and the last component of the normalized vector \(\bar{\varvec{u}}_1^{(i)}(k)\), i.e. \(\bar{\varvec{u}}_1^{(i)}(k)\) = \(\left( (\bar{\varvec{u}}^{(i)}_{\mathrm{up}}(k))^T, {\bar{u}}^{(i)}_{\mathrm{low}}(k)\right) ^T\) and

$$\begin{aligned} \theta ({\bar{u}}^{(i)}_{\mathrm{low}}(k)):= {\left\{ \begin{array}{ll} 1, &{} {\bar{u}}^{(i)}_{\mathrm{low}}(k) = 0;\\ \dfrac{{\bar{u}}_{\mathrm{low}}^{(i)}(k)}{|{\bar{u}}_{\mathrm{low}}^{(i)}(k)|}, &{} \mathrm{otherwise.} \end{array}\right. } \end{aligned}$$
c. :

If \(i \not = r\), define \(\varvec{A}^{(i+1)}(k)\) and \(\varvec{B}^{(i+1)}(k)\) as

$$\begin{aligned} \varvec{A}^{(i+1)}(k)&= \left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \varvec{A}^{(i)}(k) \varvec{U}_{\perp }^{(i)}(k), \\ \varvec{B}^{(i+1)}(k)&= \left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \varvec{B}^{(i)}(k) \varvec{U}_{\perp }^{(i)}(k) , \end{aligned}$$

and for [Example 1(a)], calculate \(\varvec{Q}_{\varvec{B}}^{(i+1)}(k):=(\varvec{B}^{i+1}(k))^{-1}\) as

$$\begin{aligned} \varvec{Q}_{\varvec{B}}^{(i+1)}(k)&= \left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \varvec{Q}_{\varvec{B}}^{(i)}(k) \varvec{U}_{\perp }^{(i)}(k) \\&\qquad \quad -\left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \varvec{u}_1^{(i)}(k) \left( \varvec{u}_1^{(i)}(k)\right) ^H \varvec{U}_{\perp }^{(i)}(k), \end{aligned}$$

or, for [Example 1(b)], calculate \(\varvec{Q}_{\varvec{A}}^{(i+1)}(k):= (\varvec{A}^{(i+1)}(k))^{-1}\) as

$$\begin{aligned} \varvec{Q}_{\varvec{A}}^{(i+1)}(k)&= \left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \varvec{Q}_{\varvec{A}}^{(i)}(k) \varvec{U}_{\perp }^{(i)}(k) \\&\quad \qquad -\left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \frac{\varvec{Q}_{\varvec{A}}^{(i)}(k)\bar{\varvec{u}}_1^{(i)}(k) \left( \varvec{Q}_{\varvec{A}}^{(i)}(k)\bar{\varvec{u}}_1^{(i)}(k)\right) ^H }{\left( \bar{\varvec{u}}_1^{(i)}(k)\right) ^H\varvec{Q}_{\varvec{A}}^{(i)}(k)\bar{\varvec{u}}_1^{(i)}(k)} \varvec{U}_{\perp }^{(i)}(k). \end{aligned}$$

Step3 For \(i =2,\cdots ,r\), update \(\varvec{u}_i^{(1)}(k)\) as

$$\begin{aligned} \varvec{u}_i^{(1)}(k) = {\varvec{\perp }_i^{{\mathcal {I}}}}(k)\varvec{u}_1^{(i)}(k) = \varvec{U}_{\perp }^{(1)}(k)\cdots \varvec{U}_{\varvec{\perp }}^{(i-1)}(k)\varvec{u}_1^{(i)}(k). \end{aligned}$$

Remark 4

(Stepsizes for Example 1(b) in (51))

For simplicity, we assume that

$$\begin{aligned} \eta _1 := \frac{\mu _1}{\mu _N - \mu _1 } > 0 \end{aligned}$$
(52)

is available for numerical experiments. This \(\eta _1\) satisfies the convergence condition (19) with i=1 for \((\varvec{A}^{(1)},\varvec{B}^{(1)}) = (\varvec{A},\varvec{B})\). Then,

$$\begin{aligned} \eta _i := \frac{2\mu _i\eta _1}{\mu _1(2+\eta _1)-\mu _i\eta _1} \end{aligned}$$
(53)

satisfies the convergence condition (19) for \((\varvec{A}^{(i)},\varvec{B}^{(i)})\) (\(i=2,\ldots ,r\)), which is verified by

$$\begin{aligned} \eta _i =\dfrac{2\mu _i\eta _1}{2\mu _1-(\mu _i-\mu _1)\eta _1} \ge \dfrac{2\mu _i\eta _1}{2\mu _1} \ge \eta _1 \quad (\mathrm {from}\quad \mu _i \ge \mu _1), \end{aligned}$$

and

$$\begin{aligned} \eta _i = \frac{2\mu _i}{\mu _1\left( \dfrac{2}{\eta _1}+1\right) -\mu _i}< \frac{2\mu _i}{\mu _1\left( \dfrac{2}{\frac{2\mu _1}{\mu _N - \mu _1}}+1\right) -\mu _i}=\frac{2\mu _i}{\mu _N - \mu _i}. \end{aligned}$$

The stepsize in (51) is designed by replacing the ith generalized eigenvalue \(\mu _i\) \((i=1,\ldots ,r)\) of \((\varvec{A}^{(1)},\varvec{B}^{(1)})\) in (53) with their estimates \(\mu _i(k-1)\).

Appendix 7: Algorithm 2: Combinations of adaptive schemes and FMGEs

Algorithm 2

Initialization step:

Set \(k=0\), \(\varvec{R}^{(1)}_y(0) = \varvec{R}^{(1)}_x(0) = \varvec{I}_N\), and for [Example 1(a)], set \(\varvec{Q}^{(1)}_x(0)=\varvec{I}_N\), and, for [Example 1(b)], set \(\varvec{Q}^{(1)}_y(0)=\varvec{I}_N\). Set \(\{\varvec{w}_i^{(1)}(0)\}_{i=1}^{r} \subset {\mathbb {C}}^N\) arbitrarily as an initial estimate of a basis of the time-varying generalized minor subspace (note that\(\{\varvec{w}_i^{(1)}(0)\}_{i=2}^{r} \subset {\mathbb {C}}^N\) are used in the projection step of Scheme 2A and Scheme 3A) and, for [Example 1(b)], set \(\lambda _i(0)\) as an initial estimate of eigenvalues. For \(i=2,\ldots ,r\), set \(\varvec{w}_1^{(i)}(k) \in {\mathbb {C}}^{N-i+1}\) arbitrarily as an initial estimate of the first minor generalized eigenvector of the matrix pencil \((\varvec{R}^{(i)}_y, \varvec{R}^{(i)}_x)\). Moreover, for Scheme 3A, set the threshold \({\hat{\theta }}\).

Iteration step:

Step1 \(k\leftarrow k+1\), \(i = 1\) and update \(\varvec{R}^{(1)}_y(k), \varvec{R}^{(1)}_x(k)\) by (4) and for [Example 1(a)], set \(\varvec{Q}^{(1)}_x(k) := (\varvec{R}^{(1)}_x(k))^{-1}\) by the matrix inversion lemma (Hager 1989) as

$$\begin{aligned} \varvec{Q}^{(1)}_x(k) =\dfrac{1}{\alpha } \left( \varvec{Q}^{(1)}_x(k-1) - \dfrac{\varvec{Q}^{(1)}_x(k-1)\varvec{x}(k)(\varvec{x}(k))^H\varvec{Q}^{(1)}_x(k-1)}{\alpha +(\varvec{x}(k))^{H}\varvec{Q}^{(1)}_x(k-1)\varvec{x}(k)} \right) \end{aligned}$$

or, for [Example 1(b)], set \(\varvec{Q}^{(1)}_y(k) := (\varvec{R}^{(1)}_y(k))^{-1}\) as

$$\begin{aligned} \varvec{Q}^{(1)}_y(k) =\dfrac{1}{\alpha } \left( \varvec{Q}^{(1)}_y(k-1) - \dfrac{\varvec{Q}^{(1)}_y(k-1)\varvec{y}(k)(\varvec{y}(k))^H\varvec{Q}^{(1)}_y(k-1)}{\alpha +(\varvec{y}(k))^{H}\varvec{Q}^{(1)}_y(k-1)\varvec{y}(k)} \right) . \end{aligned}$$

Step2 For \(i = 1,\dots , r\),

\(\mathbf{a}_{+}.\) :

Set \(\widetilde{\varvec{w}}_1^{(i)}(k-1)\) as [Scheme 1A] \(\widetilde{\varvec{w}}_1^{(i)}(k-1) = \varvec{w}_1^{(i)}(k-1)\). [Scheme 2A]

$$\begin{aligned} \widetilde{\varvec{w}}^{(i)}_1(k-1):= {\left\{ \begin{array}{ll} \varvec{w}^{(1)}_1(k-1)\text{, } &{} i=1 \text{; }\\ \dfrac{ \left( {\varvec{\perp }^{{\mathcal {A}}}_i}(k) \right) ^H \varvec{w}_i^{(1)}(k-1) }{ \Vert \left( {\varvec{\perp }^{{\mathcal {A}}}_i}(k) \right) ^H \varvec{w}_i^{(1)}(k-1)\Vert _{\varvec{R}_x^{(i)}(k)} } \text{, }&{} i=2,\ldots ,r\mathrm{.} \end{array}\right. } \end{aligned}$$

[Scheme 3A] If \(i=1\), or, for \( i\ge 2\), \(\forall s\) (\(1\le s \le i-1\)) \(\mathrm {angle}({\bar{w}}_{\mathrm{low}}^{(s)}(k), {\bar{w}}_{\mathrm{low}}^{(s)}(k-1)) \le {\hat{\theta }}\),

$$\begin{aligned} \widetilde{\varvec{w}}_1^{(i)}(k-1) = \varvec{w}_1^{(i)}(k-1), \end{aligned}$$

otherwise

$$\begin{aligned} \widetilde{\varvec{w}}^{(i)}_1(k-1) = \frac{ \left( {\varvec{\perp }^{{\mathcal {A}}}_i}(k) \right) ^H \varvec{w}_i^{(1)}(k-1) }{ \Vert \left( {\varvec{\perp }^{{\mathcal {A}}}_i}(k) \right) ^H \varvec{w}_i^{(1)}(k-1)\Vert _{\varvec{R}_x^{(i)}(k)} }. \end{aligned}$$
a. :

Perform one update of \(\mathrm {FMGE}(\varvec{R}^{(i)}_y(k),\varvec{R}^{(i)}_x(k))\) from \(\widetilde{\varvec{w}}^{(i)}_1(k-1)\) and denote its outcome by \(\varvec{w}^{(i)}_1(k)\). Calculate \( \varvec{w}^{(i)}_1(k)\) as [Example 1(a)]

$$\begin{aligned} \widehat{\varvec{w}}_1^{(i)}(k)&= \left( \frac{1}{\tau }\varvec{I}_{N-i+1} - \varvec{Q}^{(i)}_x(k)\varvec{R}^{(i)}_y(k) \right) \widetilde{\varvec{w}}^{(i)}_1(k-1), \\ \varvec{w}_1^{(i)}(k)&=\frac{\widehat{\varvec{w}}_1^{(i)}(k)}{\Vert \widehat{\varvec{w}}_1^{(i)}(k) \Vert _{\varvec{R}^{(i)}_x(k)}}\mathrm {,} \end{aligned}$$

or [Example 1(b)]

$$\begin{aligned} \eta _i(k)&= {\left\{ \begin{array}{ll} \eta _1\text{, } &{} i=1\mathrm{;}\\ \dfrac{2\lambda _i(k-1)\eta _1}{\lambda _1(k-1)(2+\eta _1)-\lambda _i(k-1)\eta _1} \text{, }&{} i=2, \ldots , r \mathrm{,} \end{array}\right. }\\ \widehat{\varvec{w}}_1^{(i)}(k)&= \widetilde{\varvec{w}}_1^{(i)}(k-1) + \eta _i(k) \, \Bigl [ \varvec{Q}_y^{(i)}(k)\varvec{R}^{(i)}_x(k) \widetilde{\varvec{w}}_1^{(i)}(k-1)\lambda _i(k-1) \\&\quad +(\widetilde{\varvec{w}}_1^{(i)}(k-1))^H\varvec{R}^{(i)}_y(k)\widetilde{\varvec{w}}_1^{(i)}(k-1)\widetilde{\varvec{w}}_1^{(i)}(k-1)\lambda _i^{-1}(k-1)\\&\quad -2 \widetilde{\varvec{w}}_1^{(i)}(k-1) \Bigl ], \\ \varvec{w}_1^{(i)}(k)&=\frac{\widehat{\varvec{w}}_1^{(i)}(k) }{\Vert \widehat{\varvec{w}}_1^{(i)}(k) \Vert _{\varvec{R}^{(i)}_x(k)}},\\ \lambda _i(k)&= (1-\gamma )\lambda _i(k-1) +\gamma (\varvec{w}_1^{(i)}(k))^H\varvec{R}^{(i)}_y(k)\varvec{w}_1^{(i)}(k). \end{aligned}$$
b. :

If \(i \not = r\), compute an \(\varvec{R}_x^{(i)}(k)\)-orthogonal complement matrix \(\varvec{W}_{\perp }^{(i)}(k)\) of \(\varvec{w}_1^{(i)}(k)\) by (5) as

$$\begin{aligned} \bar{\varvec{w}}_1^{(i)}(k)&= \frac{\varvec{R}_x^{(i)}(k)\varvec{w}_1^{(i)}(k)}{\Vert \varvec{R}_x^{(i)}(k)\varvec{w}_1^{(i)}(k)\Vert }\\ \varvec{W}_{\perp }^{(i)}(k)&=\begin{pmatrix} \varvec{I}_{N-i}-\frac{1}{1+|{\bar{w}}_{\mathrm{low}}^{(i)}(k)|} \bar{\varvec{w}}^{(i)}_{\mathrm{up}}(k) \left( \bar{\varvec{w}}^{(i)}_{\mathrm{up}}(k)\right) ^H \\ -\theta ({\bar{w}}^{(i)}_{\mathrm{low}}(k)) \left( \bar{\varvec{w}}^{(i)}_{\mathrm{up}}(k)\right) ^H \end{pmatrix}, \end{aligned}$$

where \(\Vert \cdot \Vert \) stands for the standard Euclidean norm, \(\bar{\varvec{w}}^{(i)}_{\mathrm{up}}(k) \in {\mathbb {C}}^{N-i} \) and \({\bar{w}}^{(i)}_{\mathrm{low}}(k) \in {\mathbb {C}} \) are respectively the first \((N-i)\) components and the last component of the normalized vector \(\bar{\varvec{w}}_1^{(i)}(k)\), i.e., \(\bar{\varvec{w}}_1^{(i)}(k)\) = \(\left( (\bar{\varvec{w}}^{(i)}_{\mathrm{up}}(k))^T, {\bar{w}}^{(i)}_{\mathrm{low}}(k) \right) ^T\) and

$$\begin{aligned} \theta ({\bar{w}}^{(i)}_{\mathrm{low}}(k)):= {\left\{ \begin{array}{ll} 1, &{} {\bar{w}}^{(i)}_{\mathrm{low}}(k) = 0\mathrm{;}\\ \dfrac{{\bar{w}}_{\mathrm{low}}^{(i)}(k)}{|{\bar{w}}_{\mathrm{low}}^{(i)}(k)|}, &{} \mathrm{otherwise}. \end{array}\right. } \end{aligned}$$
c. :

If \(i \not = r\), define \(\varvec{R}_y^{(i+1)}(k)\) and \(\varvec{R}_x^{(i+1)}(k)\) as

$$\begin{aligned} \varvec{R}_y^{(i+1)}(k)&= \left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \varvec{R}_y^{(i)}(k) \varvec{W}_{\perp }^{(i)}(k), \\ \varvec{R}_x^{(i+1)}(k)&= \left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \varvec{R}_x^{(i)}(k) \varvec{W}_{\perp }^{(i)}(k), \end{aligned}$$

and [Example 1(a)] calculate \(\varvec{Q}_x^{(i+1)}(k) :=(\varvec{R}^{(i+1)}_x(k))^{-1}\) for as

$$\begin{aligned} \varvec{Q}_x^{(i+1)}(k)&= \left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \varvec{Q}_x^{(i)}(k) \varvec{W}_{\perp }^{(i)}(k) \\&\qquad \quad -\left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \varvec{w}_1^{(i)}(k) \left( \varvec{w}_1^{(i)}(k)\right) ^H \varvec{W}_{\perp }^{(i)}(k), \end{aligned}$$

or, for [Example 1(b)] calculate \(\varvec{Q}_y^{(i+1)}(k):=(\varvec{R}^{(i+1)}_y(k))^{-1}\) as

$$\begin{aligned} \varvec{Q}_y^{(i+1)}(k)&= \left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \varvec{Q}_y^{(i)}(k) \varvec{W}_{\perp }^{(i)}(k) \\&\qquad \quad -\left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \frac{\varvec{Q}_y^{(i)}(k)\bar{\varvec{w}}_1^{(i)}(k) \left( \varvec{Q}_y^{(i)}(k)\bar{\varvec{w}}_1^{(i)}(k)\right) ^H }{\left( \bar{\varvec{w}}_1^{(i)}(k)\right) ^H\varvec{Q}_y^{(i)}(k)\bar{\varvec{w}}_1^{(i)}(k)} \varvec{W}_{\perp }^{(i)}(k). \end{aligned}$$

Step3 For \(i =2,\cdots , r\), update \(\varvec{w}_i^{(1)}(k)\) as

$$\begin{aligned} \varvec{w}_i^{(1)}(k) = {\varvec{\perp }_i^{{\mathcal {A}}}}(k)\varvec{w}_1^{(i)}(k) = \varvec{W}_{\perp }^{(1)}(k)\cdots \varvec{W}_{\perp }^{(i-1)}(k)\varvec{w}_1^{(i)}(k). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakimoto, K., Yamagishi, M. & Yamada, I. Smoothing of adaptive eigenvector extraction in nested orthogonal complement structure with minimum disturbance principle. Multidim Syst Sign Process 29, 433–465 (2018). https://doi.org/10.1007/s11045-017-0528-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0528-2

Keywords

Navigation