Abstract
For adaptive extraction of generalized eigensubspace, Nguyen, Takahashi and Yamada proposed a scheme for solving generalized Hermitian eigenvalue problem based on nested orthogonal complement structure. This scheme can extract multiple generalized eigenvectors by combining with any algorithm designed for estimation of the first minor generalized eigenvector. In this paper, we carefully analyse the effect of a discontinuous function employed in the scheme, and show that the discontinuous function can cause unsmooth changes of the estimates by the scheme in its adaptive implementation. To remedy the weakness, we newly introduce a projection step, for smoothing, without increasing the order of the computational complexity. Numerical experiments show that the learning curves of the non-first generalized eigenvectors are improved drastically through the proposed smoothing even when the original scheme results in unexpected performance degradation.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Precisely, this means the coordinate system defined by the column vectors of \({\varvec{\perp }_i}\in {\mathbb {C}}^{ N \times (N-i+1) }\).
Obviously the larger \({\hat{\theta }}\) saves more computational cost and the smaller \({\hat{\theta }}\) prevents more from unsmooth changes of the estimate. A reasonable first choice would be \( {\hat{\theta }} = \pi /2\).
References
Attallah, S., & Abed-Meraim, K. (2008). A fast adaptive algorithm for the generalized symmetric eigenvalue problem. IEEE Signal Processing Letters, 15, 797–800.
Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Muller, K. R. (2008). Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine, 25(1), 41–56.
Blossier, B., Della Morte, M., Von Hippel, G., Mendes, T., Sommer, R., ALPHA collaboration, et al. (2009). On the generalized eigenvalue method for energies and matrix elements in lattice field theory. Journal of High Energy Physics, 2009(04), 094.
Chang, C., Ding, Z., Yau, S. F., & Chan, F. H. (2000). A matrix-pencil approach to blind separation of colored nonstationary signals. IEEE Transactions on Signal Processing, 48(3), 900–907.
Chen, H., Jiang, G., & Yoshihira, K. (2007). Failure detection in large-scale internet services by principal subspace mapping. IEEE Transactions on Knowledge and Data Engineering, 19(10), 1308–1320.
Chen, T., Hua, Y., & Yan, W. Y. (1998). Global convergence of Oja’s subspace algorithm for principal component extraction. IEEE Transactions on Neural Networks, 9(1), 58–67.
Choi, S., Choi, J., Im, H. J., & Choi, B. (2002). A novel adaptive beamforming algorithm for antenna array cdma systems with strong interferers. IEEE Transactions on Vehicular Technology, 51(5), 808–816.
Chouvardas, S., Kopsinis, Y., & Theodoridis, S. (2015). Robust subspace tracking with missing entries: The set-theoretic approach. IEEE Transactions on Signal Processing, 63(19), 5060–5070.
Fukunaga, K. (1990). Introduction to statistical pattern recognition. San Diego, CA: Academic.
Hager, W. W. (1989). Updating the inverse of a matrix. SIAM Review, 31(2), 221–239.
Haykin, S. (1996). Adaptive filter theory (3rd ed.). Englewood Cliffs, NJ: Prentice-Hall.
Kakimoto, K., Kitahara, D., Yamagishi, M., & Yamada, I. (2016). Stabilization of adaptive eigenvector extraction by continuation in nested orthogonal complement structure. In: IEEE International conference on acoustics, speech and signal processing (ICASSP) (pp. 4189–4193).
Laub, A. (1979). A schur method for solving algebraic riccati equations. IEEE Transactions on Automatic Control, 24(6), 913–921.
Luenberger, D. G. (1969). Optimization by vector space methods. New York: Wiley.
Lüscher, M., & Wolff, U. (1990). How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation. Nuclear Physics B, 339(1), 222–252.
Misono, M., & Yamada, I. (2008). An efficient adaptive minor subspace extraction using exact nested orthogonal complement structure. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 91(8), 1867–1874.
Morgan, D. R. (2003). Downlink adaptive array algorithms for cellular mobile communications. IEEE Transactions on Communications, 51(3), 476–488.
Morgan, D. R. (2004). Adaptive algorithms for solving generalized eigenvalue signal enhancement problems. Signal Processing, 84(6), 957–968.
Nastar, C., & Ayache, N. (1996). Frequency-based nonrigid motion analysis: Application to four dimensional medical images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(11), 1067–1079.
Nguyen, T. D., Takahashi, N., & Yamada, I. (2013). An adaptive extraction of generalized eigensubspace by using exact nested orthogonal complement structure. Multidimensional Systems and Signal Processing, 24(3), 457–483.
Nguyen, T. D., & Yamada, I. (2013). Adaptive normalized quasi-newton algorithms for extraction of generalized eigen-pairs and their convergence analysis. IEEE Transactions on Signal Processing, 61(6), 1404–1418.
Niyogi, X. (2004). Locality preserving projections. In Neural information processing systems (Vol. 16, p. 153). MIT.
Pappas, T., Laub, A., & Sandell, N. (1980). On the numerical solution of the discrete-time algebraic riccati equation. IEEE Transactions on Automatic Control, 25(4), 631–641.
Parlett, B. N. (1980). The symmetric eigenvalue problem. Englewood Cliffs, NJ: Prentice-Hall.
Shahbazpanahi, S., Gershman, A. B., Luo, Z. Q., & Wong, K. M. (2003). Robust adaptive beamforming for general-rank signal models. IEEE Transactions on Signal Processing, 51(9), 2257–2269.
Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.
Tanaka, T. (2009). Fast generalized eigenvector tracking based on the power method. IEEE Signal Processing Letters, 16(11), 969–972.
Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415–1442.
Wong, T. F., Lok, T. M., Lehnert, J. S., & Zoltowski, M. D. (1998). A linear receiver for direct-sequence spread-spectrum multiple-access systems with antenna arrays and blind adaptation. IEEE Transactions on Information Theory, 44(2), 659–676.
Yang, B. (1995). Projection approximation subspace tracking. IEEE Transactions on Signal Processing, 43(1), 95–107.
Yang, J., Xi, H., Yang, F., & Zhao, Y. (2006). RLS-based adaptive algorithms for generalized eigen-decomposition. IEEE Transactions on Signal Processing, 54(4), 1177–1188.
Yosida, K. (1980). Functional analysis (6th ed.). Berlin: Springer.
Acknowledgements
The authors would like to thank Tuan Duong Nguyen (NTT Communications) for fruitful discussions. This work was supported in part by JSPS Grants-in-Aid (15K13986).
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: Inversions of matrices \(\varvec{B}^{(i)}\) and \(\varvec{A}^{(i)}\)
Proposition A
The matrix \(\varvec{Q}^{(i+1)}_{\varvec{B}}:= (\varvec{B}^{(i+1)})^{-1}\) can be expressed in terms of \(\varvec{Q}^{(i)}_{\varvec{B}}(k) := (\varvec{B}^{(i)}(k))^{-1}\) as
Similarly, \( \varvec{Q}^{(i+1)}_{\varvec{A}}(k) := (\varvec{A}^{(i+1)})^{-1}\) can be expressed in terms of \(\varvec{Q}^{(i)}_{\varvec{A}}:=(\varvec{A}^{(i)})^{-1}\) as
In the following, we show the proof of (44). For a proof of (43), see Corollary 2 in Nguyen et al. (2013).
Proof
Since \( \varvec{U}^{(i)} := \begin{bmatrix} \bar{\varvec{u}}_1^{(i)}&\varvec{U}^{(i)}_{\perp } \end{bmatrix}\) is a unitary matrix from the definition of the \(\varvec{B}^{(i)}\)-orthogonal complement matrix (see (7)), \(\bar{\varvec{u}}_1^{(i)}\in {\mathbb {C}}^{N-i+1}\) and \(\varvec{U}^{(i)}_{\perp } \in {\mathbb {C}}^{(N-i+1)\times (N-i)} \) satisfy
Then,
\(\square \)
Appendix 2: Proof of Lemma 1
Since Lemma 1(a) is obvious, we focus on the proof of Lemma 1(b). To show that \(\phi _N\) is discontinuous at any point \(\varvec{w}_0 := (\varvec{w}_{\mathrm{up}}^T, 0)^T \in {\mathcal {S}}_N \cap ({\mathbb {C}}^{N-1} \times \{0\})\) (note that \(\Vert \varvec{w}_{\mathrm{up}}\Vert =1\)), we show that for \(\epsilon _0 := 1\), \(\forall \delta > 0, \exists \varvec{w}\) s.t. \(\Vert \varvec{w} - \varvec{w}_0\Vert < \delta \) and \(\Vert \phi _N(\varvec{w})-\phi _N(\varvec{w}_0)\Vert _F \ge \epsilon _0 \), where \(\Vert \cdot \Vert _F \) stands for the Frobenius norm. For arbitrary fixed \(\delta >0\), define \(\varvec{w}(\delta ) \in {\mathcal {S}}_N\) as
Below, we show that \(\varvec{w}(\delta )\) satisfies \(\Vert \varvec{w}(\delta ) - \varvec{w}_0\Vert < \delta \) and \(\Vert \phi _N(\varvec{w}(\delta ))-\phi _N(\varvec{w}_0)\Vert _F > \epsilon _0 \). At first,
Next,
From the above discussion, \(\forall \delta >0\), \(\exists \varvec{w}\) s.t. \(\Vert \varvec{w} - \varvec{w}_0\Vert < \delta \) and \(\Vert \phi _N(\varvec{w}) - \phi _N(\varvec{w}_0)\Vert _F \ge \epsilon _0\). Thus the mapping \(\phi _N\) is discontinuous at \(\varvec{w}_0\). \(\square \)
Appendix 3: Proof of Proposition 1
-
(i)
The condition for the column vectors of \({\varvec{\perp }^{{\mathcal {I}}}_i}(k)\) to form a standard orthonormal basis of (span\((\{\varvec{u}_s^{(1)}(k)\}_{s=1}^{i-1})^{\perp }_{\langle \varvec{B} \rangle }\) is equivalent to
$$\begin{aligned} ({\varvec{\perp }^{{\mathcal {I}}}_i}(k))^H {\varvec{\perp }}^{{\mathcal {I}}}_i(k) =\varvec{I}_{N-i+1} \end{aligned}$$(47)and
$$\begin{aligned} ({\varvec{\perp }^{{\mathcal {I}}}_i}(k))^H\varvec{B} \varvec{u}_j^{(1)}(k) = 0 \quad \quad (j = 1,\ldots ,i-1). \end{aligned}$$(48)The relation (47) is verified as
$$\begin{aligned} ({\varvec{\perp }^{{\mathcal {I}}}_i}(k))^H {\varvec{\perp }^{{\mathcal {I}}}_i}(k)&= \left( \prod _{s=1}^{i-1} \varvec{U}_{\perp }^{(s)}(k)\right) ^H \left( \prod _{s=1}^{i-1} \varvec{U}_{\perp }^{(s)}(k)\right) \\&=\left( \varvec{U}_{\perp }^{(i-1)}(k)\right) ^H \cdots \left( \varvec{U}_{\perp }^{(1)}(k)\right) ^H \left( \varvec{U}_{\perp }^{(1)}(k)\right) \cdots \left( \varvec{U}_{\perp }^{(i-1)}(k)\right) \\&= \varvec{I}_{N-i+1} \quad \quad \left( \mathrm {From}\,(7), \, \left( \varvec{U}_{\perp }^{(s)}(k)\right) ^H \varvec{U}_{\perp }^{(s)}(k) = \varvec{I}_{N-s}\right) . \end{aligned}$$The relation (49) is verified as, for \(j=1,\ldots ,i-1 \),
$$\begin{aligned}&({\varvec{\perp }^{{\mathcal {I}}}_i}(k))^H\varvec{B} \varvec{u}_j^{(1)}(k) \\&\quad = \left( \prod _{s=1}^{i-1} \varvec{U}_{\perp }^{(s)}(k)\right) ^H \varvec{B} \left( \prod _{s=1}^{j-1} \varvec{U}_{\perp }^{(s)}\right) \varvec{u}_1^{(j)} (k)\\&\quad = \left( \varvec{U}_{\perp }^{(i-1)}(k)\right) ^H \cdots \left( \varvec{U}_{\perp }^{(1)}(k)\right) ^H \varvec{B} \left( \varvec{U}_{\perp }^{(1)}(k)\right) \cdots \left( \varvec{U}_{\perp }^{(j-1)}(k)\right) \varvec{u}_1^{(j)} (k)\\&\quad = \left( \varvec{U}_{\perp }^{(i-1)}(k)\right) ^H \cdots \left( \varvec{U}_{\perp }^{(j)}(k)\right) ^H \varvec{B}^{(j)}(k) \varvec{u}_1^{(j)}(k)\quad \left( \mathrm {From}\, (25) \right) \\&\quad =\varvec{0} \end{aligned}$$where the last equality holds by \(\varvec{U}^{(j)}_{\perp }(k) = \varvec{U}_{\perp [\varvec{B}^{(j)}(k)]}(\varvec{u}_1^{(j)}(k))\) and \(\left( \varvec{U}_{\perp }^{(j)}(k)\right) ^H \varvec{B}^{(j)}(k) \varvec{u}_1^{(j)}(k) = \varvec{0}\) (see (7), for the property of \(\varvec{B}^{(j)}(k)\)-orthogonal complement matrix).
-
(ii)
The projection of \(\varvec{z} \in {\mathbb {C}}^{N}\) onto \({\mathcal {R}}({\varvec{\perp }^{{\mathcal {I}}}_i}(k))\) is
$$\begin{aligned} P_{{\mathcal {R}}({\varvec{\perp }^{{\mathcal {I}}}_i}(k))}(\varvec{z})&= {\varvec{\perp }^{{\mathcal {I}}}_i}(k)\left( ({\varvec{\perp }^{{\mathcal {I}}}_i}(k))^H {\varvec{\perp }}^{{\mathcal {I}}}_i(k) \right) ^{-1}\left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{z} \nonumber \\&={\varvec{\perp }^{{\mathcal {I}}}_i}(k)\left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{z} \quad \mathrm {( From \, (47) )}, \end{aligned}$$(49)where the first equality holds from the Normal equation [see Sect 3.6 in Luenberger (1969)].\(\square \)
Appendix 4: Proof of Proposition 2
From (25),
Therefore,
\(\square \)
Appendix 5: Computational complexity of steps in Scheme 2I
In this section, we evaluate the total computational complexity of Step 2b, Step 2c and Step 3 of Scheme 2I at time k. We first consider computational complexity of Step 2b and 2c for fixed i. In the following, we omit k for simplicity.
In Step 2b, we have to calculate \(\varvec{B}^{(i)}\varvec{u}_1^{(i)}\) to obtain \(\varvec{U}_{\perp }^{(i)}\). Therefore, Step 2b requires \((N-i+1)^2 + {\mathcal {O}} (N-i)\) multiplications. In Step 2c, we have to calculate \(\left( \varvec{U}_{\perp }^{(i)}\right) ^H\varvec{A}^{(i)} \varvec{U}_{\perp }^{(i)}\) and \(\left( \varvec{U}_{\perp }^{(i)}\right) ^H\varvec{B}^{(i)} \varvec{U}_{\perp }^{(i)}\). For a Hermitian matrix
\(\left( \varvec{U}^{(i)}_{\perp }\right) ^H \varvec{T} \varvec{U}^{(i)}_{\perp }\), is calculated as
The second term of (50) requires \(2(N-i)^2 + {\mathcal {O}}(N-i)\) multiplications. Since the third term (50) is the conjugate transpose of the second term, we can compute this term without additional multiplications. Moreover, since \( \varvec{T}'\bar{\varvec{u}}^{(i)}_{\mathrm{up}} \) is calculated in the second term, the fourth term requires only \((N-i)^2 + {\mathcal {O}}(N-i)\) multiplications. Then, the total computational complexity of \(\left( \varvec{U}^{(i)}_{\perp }\right) ^H \varvec{T} \varvec{U}^{(i)}_{\perp }\) is \(3(N-i)^2 + {\mathcal {O}}(N-i)\). Therefore, Step 2c requires \( 6(N-i)^2 + {\mathcal {O}}(N-i) \) multiplications and for fixed i, Step 2b, and Step 2c require \(7(N-i)^2 + {\mathcal {O}}(N-i)\) multiplications.
For fixed i, Step 3 requires \(i-1\) times multiplications of orthogonal complement matrices and a vector, then the computational complexity is \(2Ni-i^2 + {\mathcal {O}}(i)\) as mentioned in Sect. 3.4.
Since Step 2b and 2c are performed for \(1\le i \le r-1\), the total computational complexity of them is \( 7N^2r - 7Nr^2 + 7r^3/6 + {\mathcal {O}}(Nr)\). Step 3 requires \(Nr^2 - r^3/6 + {\mathcal {O}}(Nr)\) when i moves 2 to r. Then, the total computational complexity of Step 2b, Step 2c and Step 3 of Scheme 2I is \(7N^2r - 6Nr^2 +2r^3 + {\mathcal {O}}(Nr)\). This is much larger than additional computational complexity \(Nr^2+{\mathcal {O}}(Nr)\) of Step 2a\(_+\), i.e., projection step (see Table 1).
Remark 3
(Computational complexity for Step 2a) In Step 2a, for instance, Example 1(a) requires \(3N^2r - 3Nr^2/2 +r^3/2 +{\mathcal {O}}(Nr)\) multiplications, and Example 1(b) requires \(5N^2r - 5Nr^2/2 +5r^3/6 +{\mathcal {O}}(Nr)\) multiplications.
Appendix 6: Algorithm 1: Combinations of incremental schemes and FMGEs
Algorithm 1
Initialization step:
Set \(k=0\), \(\{\varvec{u}_i^{(1)}(0)\}_{i=1}^{r} \subset {\mathbb {C}}^N\) arbitrarily as an initial estimate of a basis of generalized minor subspace (note that \(\{\varvec{u}_i^{(1)}(0)\}_{i=2}^{r}\) are used in the projection step of Scheme 2I and Scheme 3I) and, for [Example 1(b)], set \(\mu _i(0)\) as an initial estimate of generalized eingenvalues. For \(i=2,\ldots ,r\), set \(\varvec{u}_1^{(i)}(0) \in {\mathbb {C}}^{N-i+1}\) arbitrarily as an initial estimate of the first minor generalized eigenvector of the matrix pencil \((\varvec{A}^{(i)}, \varvec{B}^{(i)})\). Moreover, for Scheme 3I, set the threshold \({\hat{\theta }}\).
Iteration step:
Step1 \(k\leftarrow k+1\), \(i = 1\) and set \(\varvec{A}^{(1)}(k) = \varvec{A}\), \( \varvec{B}^{(1)}(k) = \varvec{B}\) and
[Example 1(a)] \(\varvec{Q}^{(1)}_{\varvec{B}}(k) := \varvec{B}^{-1}\) or [Example 1(b)] \(\varvec{Q}^{(1)}_{\varvec{A}}(k) := \varvec{A}^{-1}\).
Step2 For \(i = 1,\dots , r\),
- \(\mathbf{a}_{+}.\) :
-
Set \(\widetilde{\varvec{u}}_1^{(i)}(k-1)\) as [Scheme 1I] \(\widetilde{\varvec{u}}_1^{(i)}(k-1) = \varvec{u}_1^{(i)}(k-1) \). [Scheme 2I]
$$\begin{aligned} \widetilde{\varvec{u}}^{(i)}_1(k-1):= {\left\{ \begin{array}{ll} \varvec{u}^{(1)}_1(k-1)\text{, } &{} i=1 \text{; }\\ \dfrac{ \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{u}_i^{(1)}(k-1) }{ \Vert \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{u}_i^{(1)}(k-1)\Vert _{\varvec{B}^{(i)}(k)} } \text{, }&{} i=2,\ldots ,r\mathrm{.} \end{array}\right. } \end{aligned}$$[Scheme 3I] If \(i=1\), or, for \( i\ge 2\), \(\forall s\) (\(1\le s \le i-1\)) \(\mathrm {angle}({\bar{u}}_{\mathrm{low}}^{(s)}(k), {\bar{u}}_{\mathrm{low}}^{(s)}(k-1)) \le {\hat{\theta }}\),
$$\begin{aligned} \widetilde{\varvec{u}}_1^{(i)}(k-1) = \varvec{u}_1^{(i)}(k-1), \end{aligned}$$otherwise
$$\begin{aligned} \widetilde{\varvec{u}}^{(i)}_1(k-1) = \frac{ \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{u}_i^{(1)}(k-1) }{ \Vert \left( {\varvec{\perp }^{{\mathcal {I}}}_i}(k) \right) ^H \varvec{u}_i^{(1)}(k-1)\Vert _{\varvec{B}^{(i)}(k)} }. \end{aligned}$$
- a. :
-
Perform a single update of \(\mathrm {FMGE}(\varvec{A}^{(i)}(k),\varvec{B}^{(i)}(k))\) from \(\widetilde{\varvec{u}}^{(i)}_1(k-1)\) and denote its outcome by \(\varvec{u}^{(i)}_1(k)\). Calculate \( \varvec{u}^{(i)}_1(k)\) as [Example 1(a)]
$$\begin{aligned} \widehat{\varvec{u}}_1^{(i)}(k)&= \left( \frac{1}{\tau }\varvec{I}_{N-i+1} - \varvec{Q}^{(i)}_{\varvec{B}}(k)\varvec{A}^{(i)}(k) \right) \widetilde{\varvec{u}}^{(i)}_1(k-1) \nonumber \\ \varvec{u}_1^{(i)}(k)&=\frac{\widehat{\varvec{u}}_1^{(i)}(k)}{\Vert \widehat{\varvec{u}}_1^{(i)}(k) \Vert _{\varvec{B}^{(i)}(k)}} , \end{aligned}$$or [Example 1(b)]
$$\begin{aligned} \eta _i(k)&= {\left\{ \begin{array}{ll} \eta _1\text{, } &{} i=1\mathrm{;}\\ \dfrac{2\mu _i(k-1)\eta _1}{\mu _1(k-1)(2+\eta _1)-\mu _i(k-1)\eta _1} \text{, }&{} i=2, \ldots , r \mathrm{,} \end{array}\right. } \nonumber \\ \widehat{\varvec{u}}_1^{(i)}(k)&= \widetilde{\varvec{u}}_1^{(i)}(k-1) + \eta _i(k) \, \Bigl [ \varvec{Q}_{\varvec{A}}^{(i)}(k)\varvec{B}^{(i)}(k) \widetilde{\varvec{u}}_1^{(i)}(k-1)\mu _i(k-1) \nonumber \\ \nonumber&\quad \qquad +(\widetilde{\varvec{u}}_1^{(i)}(k-1))^H\varvec{A}^{(i)}(k)\widetilde{\varvec{u}}_1^{(i)}(k-1)\widetilde{\varvec{u}}(k-1)\mu _i^{-1}(k-1)\\ {}&\qquad -2\widetilde{\varvec{u}}_1^{(i)}(k-1) \Bigl ], \nonumber \\ \varvec{u}_1^{(i)}(k)&=\frac{\widehat{\varvec{u}}_1^{(i)}(k) }{\Vert \widehat{\varvec{u}}_1^{(i)}(k) \Vert _{\varvec{B}^{(i)}(k)}},\nonumber \\ \mu _i(k)&= (1-\gamma )\mu _i(k-1) +\gamma (\varvec{u}_1^{(i)}(k))^H\varvec{A}^{(i)}(k)\varvec{u}_1^{(i)}(k), \end{aligned}$$(51)where \(\tau , \eta _i(k), \gamma >0\) are positive small stepsizes.
- b. :
-
If \(i \not = r\), compute the \(\varvec{B}^{(i)}(k)\)-orthogonal complement matrix \(\varvec{U}_{\perp }^{(i)}(k)\) of \(\varvec{u}_1^{(i)}(k)\) by (5) as
$$\begin{aligned} \bar{\varvec{u}}_1^{(i)}(k)&= \frac{\varvec{B}^{(i)}(k)\varvec{u}_1^{(i)}(k)}{\Vert \varvec{B}^{(i)}(k)\varvec{u}_1^{(i)}(k)\Vert },\\ \varvec{U}_{\perp }^{(i)}(k)&=\begin{pmatrix} \varvec{I}_{N-i}-\frac{1}{1+|{\bar{u}}_{\mathrm{low}}^{(i)}(k)|} \bar{\varvec{u}}^{(i)}_{\mathrm{up}}(k) \left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}(k)\right) ^H \\ -\theta \left( {\bar{u}}^{(i)}_{\mathrm{low}}(k)\right) \left( \bar{\varvec{u}}^{(i)}_{\mathrm{up}}(k)\right) ^H \end{pmatrix}, \end{aligned}$$where \(\Vert \cdot \Vert \) stands for the standard Euclidean norm, \(\bar{\varvec{u}}^{(i)}_{\mathrm{up}}(k) \in {\mathbb {C}}^{N-i} \) and \({\bar{u}}^{(i)}_{\mathrm{low}}(k) \in {\mathbb {C}} \) are respectively the first \((N-i)\) components and the last component of the normalized vector \(\bar{\varvec{u}}_1^{(i)}(k)\), i.e. \(\bar{\varvec{u}}_1^{(i)}(k)\) = \(\left( (\bar{\varvec{u}}^{(i)}_{\mathrm{up}}(k))^T, {\bar{u}}^{(i)}_{\mathrm{low}}(k)\right) ^T\) and
$$\begin{aligned} \theta ({\bar{u}}^{(i)}_{\mathrm{low}}(k)):= {\left\{ \begin{array}{ll} 1, &{} {\bar{u}}^{(i)}_{\mathrm{low}}(k) = 0;\\ \dfrac{{\bar{u}}_{\mathrm{low}}^{(i)}(k)}{|{\bar{u}}_{\mathrm{low}}^{(i)}(k)|}, &{} \mathrm{otherwise.} \end{array}\right. } \end{aligned}$$ - c. :
-
If \(i \not = r\), define \(\varvec{A}^{(i+1)}(k)\) and \(\varvec{B}^{(i+1)}(k)\) as
$$\begin{aligned} \varvec{A}^{(i+1)}(k)&= \left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \varvec{A}^{(i)}(k) \varvec{U}_{\perp }^{(i)}(k), \\ \varvec{B}^{(i+1)}(k)&= \left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \varvec{B}^{(i)}(k) \varvec{U}_{\perp }^{(i)}(k) , \end{aligned}$$and for [Example 1(a)], calculate \(\varvec{Q}_{\varvec{B}}^{(i+1)}(k):=(\varvec{B}^{i+1}(k))^{-1}\) as
$$\begin{aligned} \varvec{Q}_{\varvec{B}}^{(i+1)}(k)&= \left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \varvec{Q}_{\varvec{B}}^{(i)}(k) \varvec{U}_{\perp }^{(i)}(k) \\&\qquad \quad -\left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \varvec{u}_1^{(i)}(k) \left( \varvec{u}_1^{(i)}(k)\right) ^H \varvec{U}_{\perp }^{(i)}(k), \end{aligned}$$or, for [Example 1(b)], calculate \(\varvec{Q}_{\varvec{A}}^{(i+1)}(k):= (\varvec{A}^{(i+1)}(k))^{-1}\) as
$$\begin{aligned} \varvec{Q}_{\varvec{A}}^{(i+1)}(k)&= \left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \varvec{Q}_{\varvec{A}}^{(i)}(k) \varvec{U}_{\perp }^{(i)}(k) \\&\quad \qquad -\left( \varvec{U}_{\perp }^{(i)}(k) \right) ^H \frac{\varvec{Q}_{\varvec{A}}^{(i)}(k)\bar{\varvec{u}}_1^{(i)}(k) \left( \varvec{Q}_{\varvec{A}}^{(i)}(k)\bar{\varvec{u}}_1^{(i)}(k)\right) ^H }{\left( \bar{\varvec{u}}_1^{(i)}(k)\right) ^H\varvec{Q}_{\varvec{A}}^{(i)}(k)\bar{\varvec{u}}_1^{(i)}(k)} \varvec{U}_{\perp }^{(i)}(k). \end{aligned}$$
Step3 For \(i =2,\cdots ,r\), update \(\varvec{u}_i^{(1)}(k)\) as
Remark 4
(Stepsizes for Example 1(b) in (51))
For simplicity, we assume that
is available for numerical experiments. This \(\eta _1\) satisfies the convergence condition (19) with i=1 for \((\varvec{A}^{(1)},\varvec{B}^{(1)}) = (\varvec{A},\varvec{B})\). Then,
satisfies the convergence condition (19) for \((\varvec{A}^{(i)},\varvec{B}^{(i)})\) (\(i=2,\ldots ,r\)), which is verified by
and
The stepsize in (51) is designed by replacing the ith generalized eigenvalue \(\mu _i\) \((i=1,\ldots ,r)\) of \((\varvec{A}^{(1)},\varvec{B}^{(1)})\) in (53) with their estimates \(\mu _i(k-1)\).
Appendix 7: Algorithm 2: Combinations of adaptive schemes and FMGEs
Algorithm 2
Initialization step:
Set \(k=0\), \(\varvec{R}^{(1)}_y(0) = \varvec{R}^{(1)}_x(0) = \varvec{I}_N\), and for [Example 1(a)], set \(\varvec{Q}^{(1)}_x(0)=\varvec{I}_N\), and, for [Example 1(b)], set \(\varvec{Q}^{(1)}_y(0)=\varvec{I}_N\). Set \(\{\varvec{w}_i^{(1)}(0)\}_{i=1}^{r} \subset {\mathbb {C}}^N\) arbitrarily as an initial estimate of a basis of the time-varying generalized minor subspace (note that\(\{\varvec{w}_i^{(1)}(0)\}_{i=2}^{r} \subset {\mathbb {C}}^N\) are used in the projection step of Scheme 2A and Scheme 3A) and, for [Example 1(b)], set \(\lambda _i(0)\) as an initial estimate of eigenvalues. For \(i=2,\ldots ,r\), set \(\varvec{w}_1^{(i)}(k) \in {\mathbb {C}}^{N-i+1}\) arbitrarily as an initial estimate of the first minor generalized eigenvector of the matrix pencil \((\varvec{R}^{(i)}_y, \varvec{R}^{(i)}_x)\). Moreover, for Scheme 3A, set the threshold \({\hat{\theta }}\).
Iteration step:
Step1 \(k\leftarrow k+1\), \(i = 1\) and update \(\varvec{R}^{(1)}_y(k), \varvec{R}^{(1)}_x(k)\) by (4) and for [Example 1(a)], set \(\varvec{Q}^{(1)}_x(k) := (\varvec{R}^{(1)}_x(k))^{-1}\) by the matrix inversion lemma (Hager 1989) as
or, for [Example 1(b)], set \(\varvec{Q}^{(1)}_y(k) := (\varvec{R}^{(1)}_y(k))^{-1}\) as
Step2 For \(i = 1,\dots , r\),
- \(\mathbf{a}_{+}.\) :
-
Set \(\widetilde{\varvec{w}}_1^{(i)}(k-1)\) as [Scheme 1A] \(\widetilde{\varvec{w}}_1^{(i)}(k-1) = \varvec{w}_1^{(i)}(k-1)\). [Scheme 2A]
$$\begin{aligned} \widetilde{\varvec{w}}^{(i)}_1(k-1):= {\left\{ \begin{array}{ll} \varvec{w}^{(1)}_1(k-1)\text{, } &{} i=1 \text{; }\\ \dfrac{ \left( {\varvec{\perp }^{{\mathcal {A}}}_i}(k) \right) ^H \varvec{w}_i^{(1)}(k-1) }{ \Vert \left( {\varvec{\perp }^{{\mathcal {A}}}_i}(k) \right) ^H \varvec{w}_i^{(1)}(k-1)\Vert _{\varvec{R}_x^{(i)}(k)} } \text{, }&{} i=2,\ldots ,r\mathrm{.} \end{array}\right. } \end{aligned}$$[Scheme 3A] If \(i=1\), or, for \( i\ge 2\), \(\forall s\) (\(1\le s \le i-1\)) \(\mathrm {angle}({\bar{w}}_{\mathrm{low}}^{(s)}(k), {\bar{w}}_{\mathrm{low}}^{(s)}(k-1)) \le {\hat{\theta }}\),
$$\begin{aligned} \widetilde{\varvec{w}}_1^{(i)}(k-1) = \varvec{w}_1^{(i)}(k-1), \end{aligned}$$otherwise
$$\begin{aligned} \widetilde{\varvec{w}}^{(i)}_1(k-1) = \frac{ \left( {\varvec{\perp }^{{\mathcal {A}}}_i}(k) \right) ^H \varvec{w}_i^{(1)}(k-1) }{ \Vert \left( {\varvec{\perp }^{{\mathcal {A}}}_i}(k) \right) ^H \varvec{w}_i^{(1)}(k-1)\Vert _{\varvec{R}_x^{(i)}(k)} }. \end{aligned}$$
- a. :
-
Perform one update of \(\mathrm {FMGE}(\varvec{R}^{(i)}_y(k),\varvec{R}^{(i)}_x(k))\) from \(\widetilde{\varvec{w}}^{(i)}_1(k-1)\) and denote its outcome by \(\varvec{w}^{(i)}_1(k)\). Calculate \( \varvec{w}^{(i)}_1(k)\) as [Example 1(a)]
$$\begin{aligned} \widehat{\varvec{w}}_1^{(i)}(k)&= \left( \frac{1}{\tau }\varvec{I}_{N-i+1} - \varvec{Q}^{(i)}_x(k)\varvec{R}^{(i)}_y(k) \right) \widetilde{\varvec{w}}^{(i)}_1(k-1), \\ \varvec{w}_1^{(i)}(k)&=\frac{\widehat{\varvec{w}}_1^{(i)}(k)}{\Vert \widehat{\varvec{w}}_1^{(i)}(k) \Vert _{\varvec{R}^{(i)}_x(k)}}\mathrm {,} \end{aligned}$$or [Example 1(b)]
$$\begin{aligned} \eta _i(k)&= {\left\{ \begin{array}{ll} \eta _1\text{, } &{} i=1\mathrm{;}\\ \dfrac{2\lambda _i(k-1)\eta _1}{\lambda _1(k-1)(2+\eta _1)-\lambda _i(k-1)\eta _1} \text{, }&{} i=2, \ldots , r \mathrm{,} \end{array}\right. }\\ \widehat{\varvec{w}}_1^{(i)}(k)&= \widetilde{\varvec{w}}_1^{(i)}(k-1) + \eta _i(k) \, \Bigl [ \varvec{Q}_y^{(i)}(k)\varvec{R}^{(i)}_x(k) \widetilde{\varvec{w}}_1^{(i)}(k-1)\lambda _i(k-1) \\&\quad +(\widetilde{\varvec{w}}_1^{(i)}(k-1))^H\varvec{R}^{(i)}_y(k)\widetilde{\varvec{w}}_1^{(i)}(k-1)\widetilde{\varvec{w}}_1^{(i)}(k-1)\lambda _i^{-1}(k-1)\\&\quad -2 \widetilde{\varvec{w}}_1^{(i)}(k-1) \Bigl ], \\ \varvec{w}_1^{(i)}(k)&=\frac{\widehat{\varvec{w}}_1^{(i)}(k) }{\Vert \widehat{\varvec{w}}_1^{(i)}(k) \Vert _{\varvec{R}^{(i)}_x(k)}},\\ \lambda _i(k)&= (1-\gamma )\lambda _i(k-1) +\gamma (\varvec{w}_1^{(i)}(k))^H\varvec{R}^{(i)}_y(k)\varvec{w}_1^{(i)}(k). \end{aligned}$$ - b. :
-
If \(i \not = r\), compute an \(\varvec{R}_x^{(i)}(k)\)-orthogonal complement matrix \(\varvec{W}_{\perp }^{(i)}(k)\) of \(\varvec{w}_1^{(i)}(k)\) by (5) as
$$\begin{aligned} \bar{\varvec{w}}_1^{(i)}(k)&= \frac{\varvec{R}_x^{(i)}(k)\varvec{w}_1^{(i)}(k)}{\Vert \varvec{R}_x^{(i)}(k)\varvec{w}_1^{(i)}(k)\Vert }\\ \varvec{W}_{\perp }^{(i)}(k)&=\begin{pmatrix} \varvec{I}_{N-i}-\frac{1}{1+|{\bar{w}}_{\mathrm{low}}^{(i)}(k)|} \bar{\varvec{w}}^{(i)}_{\mathrm{up}}(k) \left( \bar{\varvec{w}}^{(i)}_{\mathrm{up}}(k)\right) ^H \\ -\theta ({\bar{w}}^{(i)}_{\mathrm{low}}(k)) \left( \bar{\varvec{w}}^{(i)}_{\mathrm{up}}(k)\right) ^H \end{pmatrix}, \end{aligned}$$where \(\Vert \cdot \Vert \) stands for the standard Euclidean norm, \(\bar{\varvec{w}}^{(i)}_{\mathrm{up}}(k) \in {\mathbb {C}}^{N-i} \) and \({\bar{w}}^{(i)}_{\mathrm{low}}(k) \in {\mathbb {C}} \) are respectively the first \((N-i)\) components and the last component of the normalized vector \(\bar{\varvec{w}}_1^{(i)}(k)\), i.e., \(\bar{\varvec{w}}_1^{(i)}(k)\) = \(\left( (\bar{\varvec{w}}^{(i)}_{\mathrm{up}}(k))^T, {\bar{w}}^{(i)}_{\mathrm{low}}(k) \right) ^T\) and
$$\begin{aligned} \theta ({\bar{w}}^{(i)}_{\mathrm{low}}(k)):= {\left\{ \begin{array}{ll} 1, &{} {\bar{w}}^{(i)}_{\mathrm{low}}(k) = 0\mathrm{;}\\ \dfrac{{\bar{w}}_{\mathrm{low}}^{(i)}(k)}{|{\bar{w}}_{\mathrm{low}}^{(i)}(k)|}, &{} \mathrm{otherwise}. \end{array}\right. } \end{aligned}$$ - c. :
-
If \(i \not = r\), define \(\varvec{R}_y^{(i+1)}(k)\) and \(\varvec{R}_x^{(i+1)}(k)\) as
$$\begin{aligned} \varvec{R}_y^{(i+1)}(k)&= \left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \varvec{R}_y^{(i)}(k) \varvec{W}_{\perp }^{(i)}(k), \\ \varvec{R}_x^{(i+1)}(k)&= \left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \varvec{R}_x^{(i)}(k) \varvec{W}_{\perp }^{(i)}(k), \end{aligned}$$and [Example 1(a)] calculate \(\varvec{Q}_x^{(i+1)}(k) :=(\varvec{R}^{(i+1)}_x(k))^{-1}\) for as
$$\begin{aligned} \varvec{Q}_x^{(i+1)}(k)&= \left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \varvec{Q}_x^{(i)}(k) \varvec{W}_{\perp }^{(i)}(k) \\&\qquad \quad -\left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \varvec{w}_1^{(i)}(k) \left( \varvec{w}_1^{(i)}(k)\right) ^H \varvec{W}_{\perp }^{(i)}(k), \end{aligned}$$or, for [Example 1(b)] calculate \(\varvec{Q}_y^{(i+1)}(k):=(\varvec{R}^{(i+1)}_y(k))^{-1}\) as
$$\begin{aligned} \varvec{Q}_y^{(i+1)}(k)&= \left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \varvec{Q}_y^{(i)}(k) \varvec{W}_{\perp }^{(i)}(k) \\&\qquad \quad -\left( \varvec{W}_{\perp }^{(i)}(k) \right) ^H \frac{\varvec{Q}_y^{(i)}(k)\bar{\varvec{w}}_1^{(i)}(k) \left( \varvec{Q}_y^{(i)}(k)\bar{\varvec{w}}_1^{(i)}(k)\right) ^H }{\left( \bar{\varvec{w}}_1^{(i)}(k)\right) ^H\varvec{Q}_y^{(i)}(k)\bar{\varvec{w}}_1^{(i)}(k)} \varvec{W}_{\perp }^{(i)}(k). \end{aligned}$$
Step3 For \(i =2,\cdots , r\), update \(\varvec{w}_i^{(1)}(k)\) as
Rights and permissions
About this article
Cite this article
Kakimoto, K., Yamagishi, M. & Yamada, I. Smoothing of adaptive eigenvector extraction in nested orthogonal complement structure with minimum disturbance principle. Multidim Syst Sign Process 29, 433–465 (2018). https://doi.org/10.1007/s11045-017-0528-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-017-0528-2