Skip to main content
Log in

Parametric estimation of 2D cubic phase signals using high-order Wigner distribution with genetic algorithm

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

A two-dimensional (2D) high-order Wigner distribution (HO-WD) is proposed for parameter estimation of 2D polynomial phase signals (PPSs). The genetic algorithm is employed for maximization of the 2D HO-WD. In comparison to the 2D cubic phase function and classical Francos and Friedlander approach, the 2D HO-WD reduces error propagation effect which leads to lower mean squared error in estimation of signal parameters. The proposed technique is generalized for the 2D higher-order PPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The CRLB is theoretically the smallest MSE that can be achieved for unbiased estimator. For mono- and multi-component 2D PPS it is derived in Francos and Friedlander (1998) and Simeunović and Djurović (2016), respectively.

References

  • Amar, A., Leshem, A., & van der Veen, A.-J. (2010). A low complexity blind estimator of narrowband polynomial phase signals. IEEE Transactions on Signal Processing, 58(9), 4674–4683.

    Article  MathSciNet  MATH  Google Scholar 

  • Barbarossa, S., Di Lorenzo, P., & Vecchiarelli, P. (2014). Parameter estimation of 2D multi-component polynomial phase signals: An application to SAR imaging of moving targets. IEEE Transactions on Signal Processing, 62(17), 4375–4389.

    Article  MathSciNet  MATH  Google Scholar 

  • Boashash, B. (2015). Time-frequency signal analysis and processing: A comprehensive reference. Boca Raton: Academic Press.

    Google Scholar 

  • Cristóbal, G., & Hormigo, J. (1999). Texture segmentation through eigen-analysis of the pseudo-Wigner distribution. Pattern Recognition Letters, 20, 337–345.

    Article  Google Scholar 

  • Djurović, I., & Stanković, LJ. (2004). Nonparametric algorithm for the local frequency estimation of multicomponent signals. IEEE Transactions on Image Processing, 13(4), 467–474.

  • Djurović, I., & Simeunović, M. (2015a). Combined HO-CPF and HO-WD PPS estimator. Signal, Image and Video Processing, 9(6), 1395–1400.

    Article  Google Scholar 

  • Djurović, I., & Simeunović, M. (2015b). Parameter estimation of non-uniform sampled polynomial-phase signals using the HOCPF-WD. Signal Processing, 106(1), 253–258.

    Article  Google Scholar 

  • Djurović, I., Simeunović, M., Djukanović, S., & Wang, P. (2012a). A hybrid CPF-HAF estimation of polynomial-phase signals: Detailed statistical analysis. IEEE Transactions on Signal Processing, 60(10), 5010–5023.

    Article  MathSciNet  MATH  Google Scholar 

  • Djurović, I., Simeunović, M., & Lutovac, B. (2012b). Are genetic algorithms useful for the parameter estimation of FM signals? Digital Signal Processing, 22(6), 1137–1144.

    Article  MathSciNet  Google Scholar 

  • Djurović, I., Wang, P., & Ioana, C. (2010a). Parameter estimation of 2-D cubic phase signal using cubic phase function with genetic algorithm. Signal Processing, 90(9), 2698–2707.

    Article  MATH  Google Scholar 

  • Djurović, I., Wang, P., Ioana, C., & Simeunović, M. (2010b). Cubic phase function for two-dimensional polynomial-phase signals. In Proceedings of 2010 European signal processing conference (EUSIPCO’2010), August 2010 (pp. 23–27).

  • Francos, J. M., & Friedlander, B. (1998). Two-dimensional polynomial phase signals: Parameter estimation and bounds. Multidimensional Systems and Signal Processing, 9(2), 173–205.

    Article  MathSciNet  MATH  Google Scholar 

  • Francos, J. M., & Friedlander, B. (1999). Optimal parameter selection in the phase differencing algorithm for 2-D phase estimation. IEEE Transactions on Signal Processing, 47(1), 273–279.

    Article  MATH  Google Scholar 

  • Friedlander, B., & Francos, J. M. (1996). An estimation algorithm for 2-D polynomial phase signals. IEEE Transactions on Image Processing, 5(6), 1084–1087.

    Article  Google Scholar 

  • Hormigo, J., & Cristóbal, G. (2004). Image segmentation using the Wigner–Ville distribution. Advances in Imaging and Electron Physics, 131, 65–80.

    Article  Google Scholar 

  • Ivanović, V. N., & Jovanovski, S. (2009). Signal adaptive system for space/spatial-frequency analysis. EURASIP Journal on Advances in Signal Processing, 2009, 1–15.

    MATH  Google Scholar 

  • Ivanović, V. N., Radović, N., & Jovanovski, S. (2010). Real-time design of space/spatial-frequency optimal filter. Electronics Letters, 46(25), 1696–1697.

    Article  Google Scholar 

  • O’Shea, P. (2002). A new technique for instantaneous frequency rate estimation. IEEE Signal Processing Letters, 9(8), 251–252.

    Article  Google Scholar 

  • O’Shea, P. (2004). A fast algorithm for estimating the parameters of a quadratic FM signal. IEEE Transactions on Signal Processing, 52(2), 385–393.

    Article  MathSciNet  MATH  Google Scholar 

  • Perry, R., DiPietro, R., & Fante, R. (1999). SAR imaging of moving targets. IEEE Transactions on Aerospace and Electronic Systems, 35(1), 188–200.

    Article  Google Scholar 

  • Porat, B. (1994). Digital processing of random signals: Theory and methods. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Porat, B., & Friedlander, B. (1996). Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals. IEEE Transactions on Information Theory, 42(3), 995–1001.

    Article  MATH  Google Scholar 

  • Raković, P., Simeunović, M., & Djurović, I. (2017). On improvement of joint estimation of DOA and PPS coefficients impinging on ULA. Signal Processing, 134, 209–213.

    Article  Google Scholar 

  • Reid, D. C., Zoubir, A. M., & Boashash, B. (1997). Aircraft flight parameter estimation based on passive acoustic techniques using the polynomial Wigner–Ville distribution. The Journal of the Acoustical Society of America, 102(1), 207–223.

    Article  Google Scholar 

  • Sekhar, S. C., & Sreenivas, T. V. (2006). Signal-to-noise ratio estimation using higher-order moments. Signal Processing, 86(4), 716–732.

    Article  MATH  Google Scholar 

  • Simeunović, M., & Djurović, I. (2016). Parameter estimation of multicomponent 2D polynomial-phase signals using the 2D PHAF-based approach. IEEE Transactions on Signal Processing, 64(3), 771–782.

    Article  MathSciNet  MATH  Google Scholar 

  • Stanković, LJ. (1997). Local polynomial Wigner distribution. Signal Processing, 59(1), 123–128.

  • Stanković, LJ., Djurović, I., Stanković, S., Simeunović, M., Djukanović, S., & Daković, M. (2014). Instantaneous frequency in time-frequency analysis: Enhanced concepts and performance of estimation algorithms. Digital Signal Processing, 35, 1–13.

  • Stanković, LJ., Stanković, S., & Djurović, I. (2008). Space/spatial-frequency analysis based filtering. IEEE Transactions on Signal Processing, 48(8), 2343–2352.

  • Stanković, S., Stanković, LJ., & Uskoković, Z. (1995). On the local frequency, group shift and cross terms in some multidimensional time-frequency distributions: A method for multidimensional time-frequency analysis. IEEE Transactions on Signal Processing, 43(7), 1719–1725.

  • Suzuki, H., & Kobayashi, F. (1992). A method of two-dimensional spectral analysis using the Wigner distribution. Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 75(1), 101–110.

    Article  Google Scholar 

  • Tang, K. S., Man, K. F., Kwong, S., & He, Q. (1996). Genetic algorithms and their applications. Signal Processing Magazine, IEEE, 13(6), 22–37.

    Article  Google Scholar 

  • Zhu, Y. M., Goutte, R., & Peyrin, F. (1990). The use of a two-dimensional Hilbert transform for Wigner analysis of 2-dimensional real signals. Signal Processing, 19(3), 205–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, Y. M., Peyrin, F., & Goutte, R. (1987). Transformation de Wigner–Ville: Description d’un nouvel outil de traitement du signal et des images. Annales des Tlcommunications, 42(3), 105–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Simeunović.

Appendix

Appendix

Consider signal (1). The 2D HO-WD of (1) can be written as

$$\begin{aligned}&\text {E}\{\text {HO-WD}\left( n,k;\omega _{n},\omega _{k};\alpha _{30} ,\alpha _{21},\alpha _{12},\alpha _{03}\right) \} \\&\quad = \underset{\tau _{n}}{\sum }\sum _{\tau _{m}}\text {E}\{x\left( n+\tau _{n},m+\tau _{m}\right) x^{*}\left( n-\tau _{n},m-\tau _{m}\right) \}\\&\qquad \times \exp \left( -j\omega _{n}\tau _{n}-j2\omega _{m}\tau _{m}-j2\alpha _{30} \tau _{n}^{3}-j2\alpha _{21}\tau _{n}^{2}\tau _{m}\right. \\&\qquad \qquad \qquad \left. -j2\alpha _{12}\tau _{n}\tau _{m}^{2}-j2\alpha _{03}\tau _{m}^{3}\right) \\&\quad =\underset{\tau _{n}}{\sum }\underset{\tau _{m}}{\sum }(\text {E}\{f\left( n+\tau _{n},m+\tau _{m}\right) f^{*}\left( n-\tau _{n},m-\tau _{m}\right) \} \\&\qquad + \text {E}\{f\left( n+\tau _{n},m+\tau _{m}\right) \nu ^{*}\left( n-\tau _{n},m-\tau _{m}\right) \}\\&\qquad +\text {E}\{\nu \left( n+\tau _{n},m+\tau _{m}\right) f^{*}\left( n-\tau _{n},m-\tau _{m}\right) \} \\&\qquad + \text {E}\{\nu \left( n+\tau _{n},m+\tau _{m}\right) \nu ^{*}\left( n-\tau _{n},m-\tau _{m}\right) \})\\&\qquad \times \exp \left( -j2\omega _{n}\tau _{n}-j2\omega _{m}\tau _{m}-j2\alpha _{30} \tau _{n}^{3}-j2\alpha _{21}\tau _{n}^{2}\tau _{m}-j2\alpha _{12} \tau _{n}\tau _{m}^{2}-j2\alpha _{03}\tau _{m}^{3}\right) . \end{aligned}$$

Since noise is zero-mean Gaussian with variance \(\sigma ^{2}\), it follows E\(\{f\left( n+\tau _{n},m+\tau _{m}\right) \)\(\nu ^{*}\left( n-\tau _{n},m-\tau _{m}\right) \}=0\), E\(\{\nu \left( n+\tau _{n},m+\tau _{m}\right) \)\(f^{*}\left( n-\tau _{n},m-\tau _{m}\right) \}=0\) and E\(\{\nu \left( n+\tau _{n},m+\tau _{m}\right) \)\(\nu ^{*}\left( n-\tau _{n},m-\tau _{m}\right) \}=\sigma ^{2}\delta (\tau _{n},\tau _{m})\). In an ideal case, the 2D HO-WD peaks for \(\alpha _{30}=a_{30},\alpha _{21}=a_{21},\alpha _{12} =a_{12},\alpha _{03}=a_{03}\), \(\omega _{n}\left( n,m\right) =a_{10} +2a_{20}n+a_{11}m+3a_{30}n^{2}+a_{12}m^{2}+a_{21}4nm\), \(\omega _{m}\left( n,m\right) =a_{01}+2a_{02}m+a_{11}n+3a_{03}m^{2}+a_{21}n^{2}+a_{12}4nm\). Since the objective function is the sum of three 2D HO-WDs, calculated at (0, 0), (\(n_{0},0\)) and (0,\(m_{0}\)), the mathematical expectation of (14) for position of the HO-WD maximum equals

$$\begin{aligned} \text {ME}\approx (MNA^{2}+\sigma ^{2})+\left( \left( N-2|n_{0}|\right) MA^{2}+\sigma ^{2}\right) +\left( N\left( M-2|m_{0}|\right) A^{2} +\sigma ^{2}\right) \text {.} \end{aligned}$$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simeunović, M., Djurović, I. & Pelinković, A. Parametric estimation of 2D cubic phase signals using high-order Wigner distribution with genetic algorithm. Multidim Syst Sign Process 30, 451–464 (2019). https://doi.org/10.1007/s11045-018-0564-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0564-6

Keywords

Navigation