Skip to main content
Log in

On minor prime factorizations for multivariate polynomial matrices

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Multivariate polynomial matrix factorizations have been widely investigated during the past years due to the fundamental importance in the areas of multidimensional systems and signal processing. In this paper, minor prime factorizations for multivariate polynomial matrices are studied. We give a necessary and sufficient condition for the existence of a minor left prime factorization for a multivariate polynomial matrix. This result is a generalization of a theorem in Wang and Kwong (Math Control Signals Syst 17(4):297–311, 2005). On the basis of this result and a method in Fabiańska and Quadrat (Radon Ser Comp Appl Math 3:23–106, 2007), we give an algorithm to decide if a multivariate polynomial matrix has minor left prime factorizations and compute one if they exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adams, W. W., & Loustaunau, P. (1994). An introduction to Gröbner bases. Providence: American Mathematical Society.

    Book  MATH  Google Scholar 

  • Bose, N. K., Buchberger, B., & Guiver, J. P. (2003). Applied multidimensional systems theory. Dordrecht: Kluwer.

    Google Scholar 

  • Brown, W. C. (1993). Matrices over commutative rings. New York: Marcel Dekker Inc.

    MATH  Google Scholar 

  • Decker, W., Greuel, G. M., Pfister, G., & Schönemann, H. (2015). Singular 4-0-2—A computer algebra system for polynomial computations. http://www.singular.uni-kl.de. Accessed 20 Dec 2016.

  • Eisenbud, D. (2013). Commutative algebra: with a view toward algebraic geometry. New York: Springer.

    MATH  Google Scholar 

  • Fabiańska, A., & Quadrat, A. (2007). Applications of the Quillen-Suslin theorem to multidimensional systems theory. Radon Series Computational and Applied Mathematics, 3, 23–106.

    MathSciNet  MATH  Google Scholar 

  • Fornasini, E., & Valcher, M. E. (1997). \(n\)-D polynomial matrices with applications to multidimensional signal analysis. Multidimensional Systems and Signal Process, 29, 387–408.

    Article  MathSciNet  MATH  Google Scholar 

  • Guiver, J. P., & Bose, N. K. (1982). Polynomial matrix primitive factorization over arbitrary coefficient field and related results. IEEE Transactions on Circuits and Systems CAS, 29(10), 649–657.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, Z. (1999). Notes on \(n\)-D polynomial matrix factorization. Multidimensional Systems and Signal Process., 10(4), 379–393.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, Z., & Bose, N. K. (2001). A generalization of Serre’s conjecture and some related issues. Linear Algebra and its Applications, 338, 125–138.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, Z., Xu, L., & Fan, H. (2005). On minor prime factorization for \(n\)-D polynomial matrices. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(9), 568–571.

    Article  Google Scholar 

  • Liu, J., & Wang, M. (2015). Further remarks on multivariate polynomial matrix factorizations. Linear Algebra and its Applications, 465, 204–213.

    Article  MathSciNet  MATH  Google Scholar 

  • Matsumura, H., & Reid, M. (1989). Commutative ring theory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Morf, M., Levy, B. C., & Kung, S. Y. (1977). New results in 2-D systems theory, Part I: 2-D polynomial matrices, factorization, and coprimeness. Proceedings of the IEEE, 65(4), 861–872.

    Article  Google Scholar 

  • Pommaret, J. F. (2001). Solving Bose conjecture on linear multidimensional systems. In Proceedings of the European control conference (pp. 1853–1855).

  • Pommaret, J. F., & Quadrat, A. (1999). Algebraic analysis of linear multidimensional control systems. IMA Journal of Mathematical Control and Information, 16, 275–297.

    Article  MathSciNet  MATH  Google Scholar 

  • Quadrat, A. (2003). The fractional representation approach to synthesis problems: An algebraic analysis viewpoint part I: (Weakly) doubly coprime factorizations. SIAM Journal on Control and Optimization, 42(1), 266–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Quadrat, A. (2013). Grade filtration of linear functional systems. Acta Applicandae Mathematicae, 127, 27–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Rotman, J. J. (2008). An introduction to homological algebra. New York: Springer.

    MATH  Google Scholar 

  • Srinivas, V. (2004). A generalized Serre problem. Journal of Algebra, 278(2), 621–627.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, M. (2007). On factor prime factorizations for \(n\)-D polynomial matrices. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1398–1405.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, M., & Feng, D. (2004). On Lin–Bose problem. Linear Algebra and its Applications, 390, 279–285.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, M., & Kwong, C. P. (2005). On multivariate polynomial matrix factorization problems. Mathematics of Control, Signals, and Systems, 17(4), 297–311.

    Article  MathSciNet  MATH  Google Scholar 

  • Youla, D. C., & Gnavi, G. (1979). Notes on \(n\)-dimensional system theory. IEEE Transactions on Circuits and Systems, 26, 105–111.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers whose valuable and constructive comments helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiancheng Guan.

Additional information

This work was supported by the National Science Foundation of China under Grant 11371131.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Li, W. & Ouyang, B. On minor prime factorizations for multivariate polynomial matrices. Multidim Syst Sign Process 30, 493–502 (2019). https://doi.org/10.1007/s11045-018-0566-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0566-4

Keywords