Skip to main content

Advertisement

Color retinal image enhancement using luminosity and quantile based contrast enhancement

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Retinal imaging is used to diagnose common eye diseases. But retinal images that suffer from image blurring, uneven illumination and low contrast become useless for further diagnosis by automated systems. In this work, we have proposed a new method for overall contrast enhancement of the color retinal images. Initially, a gain matrix of luminance values which is obtained by adaptive gamma correction method is used to enhance all three color channels of the images. After that quantile-based histogram equalization is used to enhance overall visibility of the images. Enhancement results of the proposed method are compared with several other existing methods. Performance of the proposed method is evaluated on all images of publicly available Messidor database. Based on the assessment measure we have shown that the proposed method is able to enhance the contrast of given color retinal image without changing its structural information. The proposed technique is appeared to accomplish superior image enhancement with sufficient contrast enhancement, these enhancement results are better than other related techniques. This technique for color retinal image enhancement might be utilized to help ophthalmologists in the more productive screening of retinal ailments, what’s more, being developed of enhanced robotized image examination for clinical finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abramoff, M. D., Garvin, M. K., & Sonka, M. (2010). Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 3, 169–208.

    Article  Google Scholar 

  • Chen, B., Chen, Y., Shao, Z., Tongd, T., & Luo, L. (2016). Blood vessel enhancement via multi-dictionary and sparse coding: Application to retinal vessel enhancing. Neurocomputing, 200, 110–117.

    Article  Google Scholar 

  • Daniel, E. (2015). Optimum green plane masking for the contrast enhancement of retinal images using enhanced genetic algorithm. Optik, 126(18), 1726–1730.

    Article  Google Scholar 

  • Decenciere, E., et al. (2014). Feedback on a publicly distributed image database: The Messidor database. Image Analysis & Stereology, 33(3), 231–234.

    Article  MATH  Google Scholar 

  • Fenga, P., Pana, Y., Weia, B., Jin, W., & Mi, D. (2007). Enhancing retinal image by the Contourlet transform. Pattern Recogniton Letters, 28(4), 516–522.

    Article  Google Scholar 

  • Foracchia, M., Grisan, E., & Ruggeri, A. (2005). Luminosity and contrast normalization in retinal images. Medical Image Analysis, 9(3), 179–190.

    Article  Google Scholar 

  • GeethaRamani, R., & Balasubramanian, L. (2016). Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis. Biocybernetics and Biomedical Engineering, 36(1), 102–118.

    Article  Google Scholar 

  • Gupta, B., & Agarwal, T. K. (2017). Linearly quantile separated weighted dynamic histogram equalization for contrast enhancement. Computers & Electrical Engineering. https://doi.org/10.1016/j.compeleceng.2017.01.010

  • Gupta, B., & Tiwari, M. (2015). Minimum mean brightness error contrast enhancement of color images using adaptive gamma correction with color preserving framework. International Journal for Light and Electron Optics, 127, 1671–1676.

    Article  Google Scholar 

  • Hani, A. F. M., & Nugroho, H. A. (2009). Retinal vasculature enhancement using independent component analysis. Journal of Biomedical Science and Engineering, 2(7), 543–549.

    Article  Google Scholar 

  • Korifi, R., Dreau, Y. L., Antinelli, J. F., Valls, R., & Dupuy, N. (2013). \(CIEL*a*b*\) color space predictive models for colorimetry devices—Analysis of perfume quality. Talanta, 104, 58–66.

    Article  Google Scholar 

  • Liao, M., Zhao, Y., Wang, X., & Dai, P. (2014). Retinal vessel enhancement based on multi-scale top-hat transformation and histogram fitting stretching. Optics & Laser Technology, 58, 56–62.

    Article  Google Scholar 

  • Mookiaha, M. R. K., Acharya, U. R., Chuaa, C. K., Lim, C. M., Ng, E. Y. K., & Laude, A. (2013). Computer-aided diagnosis of diabetic retinopathy: A review. Computers in Biology and Medicine, 43(12), 2136–2155.

    Article  Google Scholar 

  • Naik, S. K., & Murthy, C. A. (2003). Hue-preserving color image enhancement without gamut problem. IEEE Transactions on Image Processing, 12(12), 1591–1598.

    Article  Google Scholar 

  • Paulus, J., Meier, J., Bock, R., Hornegger, J., & Michelson, G. (2010). Automated quality assessment of retinal fundus photos. International Journal of Computer Assisted Radiology and Surgery, 5(6), 557–564.

    Article  Google Scholar 

  • Pisano, E. D., Zong, S., Hemminger, B. M., DeLuca, M., Johnston, R. E., Muller, K., et al. (1998). Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital Imaging, 11(4), 193–200.

    Article  Google Scholar 

  • Ramluguna, G. S., Nagarajana, V. K., & Chakraborty, C. (2012). Small retinal vessels extraction towards proliferative diabetic retinopathy screening. Expert Systems with Applications, 39(1), 1141–1146.

    Article  Google Scholar 

  • Seoud, L., Hurtut, T., Chelbi, J., Cheriet, F., & Langlois, J. M. P. (2016). Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Transactions on Medical Imaging, 35(4), 1116–1126. https://doi.org/10.1109/TMI.2015.2509785.

    Article  Google Scholar 

  • Sevik, U., Kose, C., Berber, T., & Erdol, H. (2014). Identification of suitable fundus images using automated quality assessment methods. Journal of Biomedical Optics, 19(4), 046006.

    Article  Google Scholar 

  • Somkuwar, A. C., Patil, T. G., Patankar, S. S., Kulkarni, J. V. (2015). Intensity features based classification of hard exudates in retinal images. In 2015 annual IEEE India conference (INDICON), New Delhi (pp. 1–5). https://doi.org/10.1109/INDICON.2015.7443402.

  • Tang, H., & Zhao, Y. (2013). Edge detection in CIE \(L*a*b\) based on fractional differential. Journal of Image Graph., 18(6), 628–636.

    Google Scholar 

  • Tiwari, M., Gupta, B., & Shrivastava, M. (2014). High speed quantile based histogram equalization for brightness preservation and contrast enhancement. IET Image Processing, 9(1), 80–89.

    Article  Google Scholar 

  • Wang, S., Zheng, J., Hu, H. M., & Li, B. (2013). Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Transactions on Image Processing, 22(9), 3538–3548.

    Article  Google Scholar 

  • Wu, X., Dai, B., & Bu, W. (2016). Optic disc localization using directional models. IEEE Transactions on Image Processing, 25(9), 4433–4442. https://doi.org/10.1109/TIP.2016.2590838.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, Y., Liu, Y., Wu, X., Harding, S. P., & Zheng, Y. (2015). Retinal vessel segmentation: An efficient graph cut approach with retinex and local phase. Plos One, 10(4), e0122332.

    Article  Google Scholar 

  • Zhou, M., Jin, K., Wang, S., Ye, J., & Qian, D. (2018). Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Transactions on Biomedical Engineering, 99, 1.

    Google Scholar 

Download references

Acknowledgements

Authors thank (Decenciere 2014) for providing free access of Messidor database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, B., Tiwari, M. Color retinal image enhancement using luminosity and quantile based contrast enhancement. Multidim Syst Sign Process 30, 1829–1837 (2019). https://doi.org/10.1007/s11045-019-00630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00630-1

Keywords