Skip to main content
Log in

An optimal adaptive thresholding based sub-histogram equalization for brightness preserving image contrast enhancement

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new adaptive thresholding based sub-histogram equalization (ATSHE) scheme is proposed for contrast enhancement and brightness preservation with retention of basic image features. The histogram of an input image is divided into different sub-histogram using adaptive thresholding intensity values. The number of threshold values or sub-histograms of the image are not fixed, but depends on the peak signal-to-noise ratio (PSNR) of the thresholded image. Histogram clipping is also used here to control the undesired enhancement of resultant image thus avoiding over-enhancement. Median value of the original histogram gives the threshold value of clipping process. The main objective of proposed method is to improve contrast enhancement with preservation of mean brightness value, structural similarity index (SSIM) and information content of the images. Image contrast enhancement is examined by well-known enhancement assessment parameters such as contrast per pixel and modified measure of enhancement. The mean brightness preservation of the image is evaluated by using absolute mean brightness error value and feature preservation qualities are checked through SSIM and PSNR values. Through the proposed routine, the enhanced images achieve a good trade-off between features enhancement, low contrast boosting and brightness preservation in addition with the natural feel of the original image. In particular, the proposed ATSHE scheme due to its adaptive nature of threshold selection can successfully enhance images under oodles of weak illumination situations such as backlighting effects, non-uniform illumination low contrast and dark images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Abdullah-Al-Wadud, M. (2007). A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53, 593–600.

    Article  Google Scholar 

  • Agaian, S. S., Silver, B., & Panetta, K. A. (2007). Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Transactions on Image Processing, 16(3), 741–758.

    Article  MathSciNet  Google Scholar 

  • Arora, S., Acharya, J., Verma, A., & Panigrahi, P. K. (2008). Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recognition Letters, 29(2), 119–125.

    Article  Google Scholar 

  • Bhandari, A. K., Kumar, A., Chaudhary, S., & Singh, G. K. (2017). A new beta differential evolution algorithm for edge preserved colored satellite image enhancement. Multidimensional Systems and Signal Processing, 28(2), 495–527.

    Article  MATH  Google Scholar 

  • Bhandari, A. K., Kumar, A., & Padhy, P. K. (2011). Enhancement of low contrast satellite images using discrete cosine transform and singular value decomposition. World Academy of Science, Engineering and Technology, 55, 35–41.

    Google Scholar 

  • Bhandari, A. K., Kumar, A., Singh, G. K., & Soni, V. (2016). Dark Satellite image enhancement using knee transfer function and gamma correction based on DWT-SVD. Multidimensional System and Signal Process., 27(2), 453–476.

    Article  Google Scholar 

  • Bhandari, A. K., Maurya, S., & Meena, A. K. (2018). Social spider optimization based optimally weighted Otsu thresholding for image enhancement. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2018.2870157.

    Google Scholar 

  • Bhandari, A. K., Singh, V. K., Kumar, A., & Singh, G. K. (2014a). Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Systems with Applications, 41(7), 3538–3560.

    Article  Google Scholar 

  • Bhandari, A. K., Soni, V., Kumar, A., & Singh, G. K. (2014b). Cuckoo search algorithm based satellite image contrast image and brightness enhancement using DWT-SVD. ISA Transactions, 53(4), 1286–1296.

    Article  Google Scholar 

  • Celik, T., & Tjahjadi, T. (2010). Unsupervised colour image segmentation using dual-tree complex wavelet transform. Computer Vision and Image Understanding, 114(7), 813–826.

    Article  Google Scholar 

  • Chen, S.-D., & Ramli, A. R. (2003a). Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Transactions on Consumer Electronics, 49(4), 1310–1319.

    Article  Google Scholar 

  • Chen, S.-D., & Ramli, A. R. (2003b). Contrast enhancement using recursive-mean-separate histogram equalization for scalable brightness preservation. IEEE Transactions on Consumer Electronics, 49(4), 1301–1309.

    Article  Google Scholar 

  • Cheng, H.-D., & Xu, H. (2000). A novel fuzzy logic approach to contrast enhancement. Pattern Recognition, 33(5), 809–819.

    Article  Google Scholar 

  • Demirel, H., Ozcinar, C., & Anbarjafari, G. (2010). Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition. IEEE Geoscience and Remote Sensing Letters, 7(2), 333–337.

    Article  Google Scholar 

  • Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X.-P., & Ding, X. (2015). A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Transactions on Image Processing, 24(12), 4965–4977.

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, X., Zeng, D., Huang, Y., Liao, Y., Ding, X., & Paisley, J. (2016). A fusion-based enhancing method for weakly illuminated images. Signal Processing, 129, 82–96.

    Article  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2011). Digital image processing (3rd ed.). Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Hasikin, K., & Isa, N. A. M. (2014). Adaptive fuzzy contrast factor enhancement technique for low contrast and nonuniform illumination images. Signal, Image and Video Processing, 8(8), 1591–1603.

    Article  Google Scholar 

  • He, K., Sun, J., & Tang, X. (2011). Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2341–2353.

    Article  Google Scholar 

  • Huang, S.-C., & Yeh, C.-H. (2013). Image contrast enhancement for preserving mean brightness without losing image features. Engineering Applications of Artificial Intelligence, 26(5), 1487–1492.

    Article  Google Scholar 

  • Kim, Y. T. (1997). Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43, 1–8.

    Article  Google Scholar 

  • Kong, N. S. P., Ibrahim, H., Ooi, C. H., Chieh, D. C. J. (2009). Enhancement of microscopic images using modified self-adaptive plateau histogram equalization. In International conference on comput. computer technology and development, 2009 (Vol. 308–310).

  • Kong, T. L., & Isa, N. A. M. (2017). Bi-histogram modification method for non-uniform illumination and low-contrast images. Multimedia Tools and Applications, 77, 8955–8978.

    Article  Google Scholar 

  • Lai, Y.-R., Tsai, P.-C., Yao, C.-Y., & Ruan, S.-J. (2017). Improved local histogram equalization with gradient-based weighting process for edge preservation. Multimedia Tools and Applications, 76, 1585–1613.

    Article  Google Scholar 

  • Li, C., & Bovik, A. C. (2010). Content-partitioned structural similarity index for image quality assessment. Signal Processing: Image Communication, 25(7), 517–526.

    Google Scholar 

  • Liu, B., Jin, W., Chen, Y., Liu, C., & Li, L. (2011). Contrast enhancement using non-overlapped sub-blocks and local histogram projection. IEEE Transactions on Consumer Electronics, 57(2), 583–588.

    Article  Google Scholar 

  • Niu, Y., Wu, X., & Shi, G. (2016). Image enhancement by entropy maximization and quantization resolution upconversion. IEEE Transactions on Image Processing, 25, 4815–4828.

    Article  MathSciNet  MATH  Google Scholar 

  • Ooi, C. H., & Isa, N. A. M. (2010). Quadrants dynamic histogram equalization for contrast enhancement. IEEE Transactions on Consumer Electronics, 56, 2552–2559.

    Article  Google Scholar 

  • Peli, E. (1990). Contrast in complex images. JOSA A, 7(10), 2032–2040.

    Article  Google Scholar 

  • Priyadharsini, R., Sharmila, T. S., & Rajendran, V. (2018). A wavelet transform based contrast enhancement method for underwater acoustic images. Multidimensional Systems and Signal Processing, 29(4), 1845–1859.

    Article  Google Scholar 

  • Sangee, N., Sangee, A., & Choi, H. K. (2010). Image contrast enhancement using bi-histogram equalization with neighbourhood metrics. IEEE Transactions on Consumer Electronics, 56(4), 2552–2559.

    Article  Google Scholar 

  • Santhi, K., & Wahida Banu, R. S. D. (2015). Adaptive contrast enhancement using modified histogram Equalization. Optik, 126, 1809–1814.

    Article  Google Scholar 

  • Shakeri, M., Dezfoulian, M. H., Khotanlou, H., Barati, A. H., & Masoumi, Y. (2017). Image contrast enhancement using fuzzy clustering with adaptive cluster parameter and sub-histogram equalization. Digital Signal Processing, 62, 224–237.

    Article  Google Scholar 

  • Shanmugavadivu, P., & Balasubramanian, K. (2014). Thresholded and optimized histogram equalization for contrast enhancement of images. Computers & Electrical Engineering, 40, 757–768.

    Article  Google Scholar 

  • Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., & Chatterjee, J. (2010). Brightness preserving dynamic fuzzy histogram equalization. IEEE Transactions on Consumer Electronics, 56, 2475–2480.

    Article  Google Scholar 

  • Sidike, P., Sagan, V., Qumsiyeh, M., Maimaitijiang, M., Essa, A., & Asari, V. (2018). Adaptive trigonometric transformation function with image contrast and color enhancement: Application to unmanned aerial system imagery. IEEE Geoscience and Remote Sensing Letters, 15(3), 404–408.

    Article  Google Scholar 

  • Sim, K. S., Tso, C. P., & Tan, Y. Y. (2007). Recursive sub-image histogram equalization applied to gray scale images. Pattern Recognition Letters, 28(10), 1209–1221.

    Article  Google Scholar 

  • Singh, K., & Kapoor, R. (2014a). Image enhancement using exposure based sub image histogram equalization. Pattern Recognition Letters, 36, 10–14.

    Article  Google Scholar 

  • Singh, K., & Kapoor, R. (2014b). Image enhancement via median-mean based sub-image-clipped histogram equalization. Optik, 125, 4646–4651.

    Article  Google Scholar 

  • Singh, K., Kapoor, R., & Sinha, S. K. (2015). Enhancement of low exposure images via recursive histogram equalization algorithms. Optik, 126, 2619–2625.

    Article  Google Scholar 

  • Singh, K., Vishwakarma, D. K., Walia, G. S., & Kapoor, R. (2016). Contrast enhancement via texture region based histogram equalization. Journal of Modern Optics, 63(15), 1444–1450.

    Article  Google Scholar 

  • Sundaram, M., Ramar, K., Arumugam, N., & Prabin, G. (2011). Histogram modified local contrast enhancement for mammogram images. Applied Soft Computing, 11(8), 5809–5816.

    Article  Google Scholar 

  • Tang, J. R., & Isa, N. A. M. (2017). Bi-histogram equalization using modified histogram bins. Applied Soft Computing, 55, 31–43.

    Article  Google Scholar 

  • Thum, C. (1984). Measurement of the entropy of an image with application to image focusing. Optica Acta: International Journal of Optics, 31(2), 203–211.

    Article  MathSciNet  Google Scholar 

  • Wan, Y., Chen, Q., & Zhang, B. M. (1999). Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Transactions on Consumer Electronics, 45, 68–75.

    Article  Google Scholar 

  • Wang, X., & Chen, L. (2017). An effective histogram modification scheme for image contrast enhancement. Signal Processing: Image Communication, 58, 187–198.

    Google Scholar 

  • Wong, C. Y., Jiang, G., Rahman, M. A., Liu, S., Lin, S. C.-F., Kwok, N., et al. (2016). Histogram equalization and optimal profile compression based approach for colour image enhancement. Journal of Visual Communication and Image Representation, 38, 802–813.

    Article  Google Scholar 

  • Xiao, Y., Cao, Z., & Yuan, J. (2014). Entropic image thresholding based on GLGM histogram. Pattern Recognition Letters, 40(15), 47–55.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the editors and anonymous referees for their constructive criticism and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Bhandari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandhway, P., Bhandari, A.K. An optimal adaptive thresholding based sub-histogram equalization for brightness preserving image contrast enhancement. Multidim Syst Sign Process 30, 1859–1894 (2019). https://doi.org/10.1007/s11045-019-00633-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00633-y

Keywords

Navigation