Skip to main content

Fusion of multi-exposure images using recursive and Gaussian filter

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper proposes a novel technique to create a high-resolution image by combining the bracketed exposure sequence without a priori knowledge of source image. The source image is split into three categories: constant, high varying and low varying feature images. For high and low varying features, pixels with highest information is selected and combined to construct collective high and low varying feature image. Collective constant feature image is constructed from weighted average of constant feature images, where weight is calculated based on information present in original source images. These pre-processed high, low and constant feature images are further combined to produce a final fused image. Objective analysis based quality evaluation parameters show a significant improvement in result produced by proposed method against the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bhoskar, S., & Kakarala, R. (2016). Novel approach to detect HDR scenes and determine suitable frames for image fusion. In International symposium on electronic imaging (pp. 1–8).

  • Dong, X., Shen, J., & Shao, L. (2017). Hierarchical superpixel-to-pixel dense matching. IEEE Transaction on Circuits and Systems for Video Technology,27(12), 2518–2526.

    Article  Google Scholar 

  • Gastal, E. S. L., & Oliveira, M. M. (2011). Domain transform for edge aware image and video processing. ACM Transactions on Graphics, 30(4), 69.

    Article  Google Scholar 

  • Goshtasby, A. A. (2005). Fusion of multi-exposure images. Image and Vision Computing,23(6), 611–618.

    Article  Google Scholar 

  • Han, Y., Cai, Y., Cao, Y., & Xu, X. (2013). A new image fusion performance metric based on visual information fidelity. Information Fusion,14(2), 127–135.

    Article  Google Scholar 

  • Hoosny, M., Nahavandi, S., & Creighton, D. (2008). Comments on information measure for performance of image fusion. Electronics Letters,44(18), 1066–1067.

    Article  Google Scholar 

  • Jo, K. H., & Vavilin, A. (2011). HDR image generation based on intensity clustering and local feature analysis. Computers in Human Behavior,27(5), 1507–1511.

    Article  Google Scholar 

  • Kim, K., Bae, J., & Kim, J. (2011). Natural HDR image tone mapping based on retinex. IEEE Transaction Consumer Electronics,57(4), 1807–1814.

    Article  Google Scholar 

  • Kotwal, K., & Chaudhuri, S. (2011).An optimization-based approach to fusion of multi-exposure, low dynamic range images. In IEEE international conference on information fusion.

  • Kuang, J., Johnson, G. M., & Fairchild, M. D. (2007). iCAM06: A refined image appearance model for HDR image rendering. Journal of Visual Communication and Image Representation,18(5), 406–414.

    Article  Google Scholar 

  • Lee, J. W., Park, R. H., & Chang, S. (2010). Tone mapping using color correction function and image decomposition in high dynamic range imaging. IEEE Transaction on Consumer Electronics,56(4), 2772–2780.

    Article  Google Scholar 

  • Li, S., & Kang, X. (2012). Fast multi-exposure image fusion with median filter and recursive filter. IEEE Transactions on Consumer Electronics,58(2), 626–632.

    Article  Google Scholar 

  • Li, X., Li, F., Zhuo, L., & Feng, D. D. (2013). Layered-based exposure fusion algorithm. IET Image Processing,7(7), 701–711.

    Article  Google Scholar 

  • Li, Z., Zheng, J., Zhu, Z., Yao, W., & Wu, S. (2015). Weighted guided image filtering. IEEE Transaction on Image Processing,24(1), 120–129.

    Article  MathSciNet  Google Scholar 

  • Liu, Y., & Wang, Z. (2015). Dense SIFT for ghost free multi-exposure fusion. Journal of Visual Communication and Image Representation,31, 208–224.

    Article  Google Scholar 

  • Ma, K., Li, H., Yong, H., Wang, Z., Meng, D., & Zhang, L. (2017). Robust multi-exposure image fusion: A structural patch decomposition approach. IEEE Transactions on Image Processing,26(5), 2519–2532.

    Article  MathSciNet  Google Scholar 

  • Mertens, T., Kautz, J., & Reeth, F. V. (2007). Exposure fusion. In IEEE pacific conference on computer graphics and applications (pp. 382–390).

  • Monobe, Y., Yamashita, H., Kurosawa, T., & Kotera, H. (2005). Dynamic range compression preserving local image contrast for digital video camera. IEEE Transaction on Consumer Electronics,51(1), 1–10.

    Article  Google Scholar 

  • Paul, S., Sevcenco, I. S., & Agathoklis, P. (2016). Multi-exposure and multi-focus image fusion in gradient domain. Journal of Circuits, Systems and Computers,25(10), 1650123.

    Article  Google Scholar 

  • Qin, X., Shen, J., Mao, X., Li, X., & Jia, Y. (2015). Robust match fusion using optimization. IEEE Transaction on Cybernetics,45(8), 1549–1560.

    Article  Google Scholar 

  • Qu, G., Zhang, D., & Yan, P. (2002). Information measure for performance of image fusion. Electronics Letters,38(7), 313–315.

    Article  Google Scholar 

  • Raman, S., & Chaudhuri, S. (2009). Bilateral filter based composition for variable exposure photography. In Proceedings of eurographics.

  • Richardson, I. E. (2010). The H.264 advanced compression standard. New York: Wiley.

    Book  Google Scholar 

  • Shan, Q., Jia, J., & Brown, M. S. (2009). Globally optimized linear windowed tone mapping. IEEE Transaction on Visualization and Computer Graphics,16(4), 663–675.

    Article  Google Scholar 

  • Shen, R., Cheng, I., & Basu, A. (2013). QoE-based multi-exposure image fusion in hierarchical multivariate Gaussian CRF. IEEE Transaction on Image Processing,22(6), 2469–2478.

    Article  Google Scholar 

  • Shen, R., Cheng, I., Shi, J., & Basu, A. (2011). Generalized random walks for fusion of multi-exposure images. IEEE Transaction on Image Processing,20(12), 3634–3646.

    Article  MathSciNet  Google Scholar 

  • Shen, J., Hao, X., Liang, Z., Wang, W., & Shao, L. (2016). Real-time superpixel segmentation by DBSCAN clustering algorithm. IEEE Transaction on Image Processing,25(12), 5933–5942.

    Article  MathSciNet  Google Scholar 

  • Shen, J., Zhao, Y., Yan, S., & Li, X. (2014). Exposure fusion using boosting Laplacian pyramid. IEEE Transactions on Cybernetics,44(9), 1579–1590.

    Article  Google Scholar 

  • Song, M., Tao, D., Chen, C., Bu, J., Luo, J., & Zhang, C. (2012). Probabilistic exposure fusion. IEEE Transaction on Image Processing,21(1), 341–357.

    Article  MathSciNet  Google Scholar 

  • Varkonyi-Koczy, A. R., Rovid, A., & Hashimoto, T. (2008). Gradient-based synthesized multiple exposure time colour HDR image. IEEE Transaction on Instrumentation and Measurement,57(8), 1779–1785.

    Article  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing,13(4), 600–612.

    Article  Google Scholar 

  • Wang, J., Feng, S., & Bao, Q. (2010). Pyramidal dual-tree directional filter bank based exposure fusion for two complementary images. In IEEE international conference on signal processing proceedings (pp. 1082–1085).

  • Wang, W., Shen, J., Li, X., & Porikli, F. (2015). Robust video object cosegmentation. IEEE Transaction on Image Processing,24(10), 3137–3148.

    Article  MathSciNet  Google Scholar 

  • Wang, W., Shen, J., Yang, R., & Porikli, F. (2018). Saliency-aware video object segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence,40(1), 20–33.

    Article  Google Scholar 

  • Xydes, C. S., & Pertovic, V. (2000). Objective image fusion performance measure. Electronics Letters,36(4), 308–309.

    Article  Google Scholar 

  • Yu, M., Song, E., Jin, R., Liu, H., Xu, X., & Ma, G. (2015). A novel method for fusion of differently exposed images based on spatial distribution of intensity for ubiquitous multimedia. Multimedia Tools and Applications,74(8), 2745–2761.

    Article  Google Scholar 

  • Zhang, W., & Cham, W. K. (2012). Gradient-directed multiexposure composition. IEEE Transactions on Image Processing,21(4), 2318–2323.

    Article  MathSciNet  Google Scholar 

  • Zhao, H., Shang, Z., Tang, Y. Y., & Fang, B. (2013). Multi-focus image fusion based on the neighbor distance. Pattern Recognition,46(3), 1002–1011.

    Article  Google Scholar 

  • Zhou, Z., Wang, B., Li, S., & Dong, M. (2016). Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral Filters. Information Fusion,30, 15–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Chaudhary.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, V., Kumar, V. Fusion of multi-exposure images using recursive and Gaussian filter. Multidim Syst Sign Process 31, 157–172 (2020). https://doi.org/10.1007/s11045-019-00655-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00655-6

Keywords