Skip to main content

\({\mathcal {L}}_p\)-norm of the LMS algorithm for bilinear forms with \(\alpha \)-stable processes

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel bilinear algorithm is proposed for multiple-input–single-output (MISO) system identification, which is based on a modified \({\mathcal {L}}_p\)-norm cost function with fractional lower order statistics. To model the MISO system, we employ the bilinear form (BF) which is defined with respect to the impulse responses of a spatiotemporal model. Considering the non-Gaussian behavior in practical MISO system with BF, \(\alpha \)-stable distribution, whose density function decays in the tails less rapidly than the Gaussian density function, is used to model the interference noise. As an added contribution, we extend the least mean pth power (LMP) and normalized LMP (NLMP) algorithms to BF, resulting in the LMP-BF and NLMP-BF algorithms. Simulation results demonstrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The positive constant \(\epsilon \), which can be absorbed into \(\iota \).

References

  • Althahab, A. Q. J. (2018). A new robust adaptive algorithm based adaptive filtering for noise cancellation. Analog Integrated Circuits and Signal Processing, 94, 217–231.

    Article  Google Scholar 

  • Arikan, O., Cetin, A. E., & Erzin, E. (1994). Adaptive filtering for non-Gaussian stable processes. IEEE Signal Processing Letters, 1, 163–165.

    Article  Google Scholar 

  • Aydin, G., Arikan, O., & Cetin, A. E. (1999). Robust adaptive filtering algorithms for \(\alpha \)-stable random processes. IEEE Transactions on Circuits and Systems, II(46), 198–202.

    Article  Google Scholar 

  • Baik, H. K., & Mathews, V. J. (1993). Adaptive lattice bilinear filters. IEEE Transactions on Signal Processing, 41, 2033–2046.

    Article  Google Scholar 

  • Benesty, J., Paleologu, C., & Ciochina, S. (2017). On the identification of bilinear forms with the Wiener filter. IEEE Signal Processing Letters, 24, 653–657.

    Article  Google Scholar 

  • Chang, W.-D. (2012). Differential evolution-based nonlinear system modeling using a bilinear series model. Applied Soft Computing, 12, 3401–3407.

    Article  Google Scholar 

  • Chen, Y., & Beaulieu, N. C. (2009). Novel low-complexity estimators for the shape parameter of the generalized Gaussian distribution. IEEE Transactions on Vehicular Technology, 58, 2067–2071.

    Article  Google Scholar 

  • Cichocki, A., & Amari, S. I. (2002). Adaptive blind signal and image processing: Learning algorithms and applications. Hoboken: Wiley.

    Book  Google Scholar 

  • Ciochina, S., Paleologu, C., & Benesty, J. (2017). Analysis of an LMS algorithm for bilinear forms. In 22nd International conference on digital signal processing (DSP) (pp. 1–5).

  • Efendi, R., Arbaiy, N., & Deris, M. M. (2018). A new procedure in stock market forecasting based on fuzzy random auto-regression time series model. Information Sciences, 441, 113–132.

    Article  MathSciNet  Google Scholar 

  • Iliescu, C. E., Paleologu, C., Dobre, R. A., Ciochina, S., & Benesty, J. (2017). An RLS algorithm for the identification of bilinear forms. In IEEE 23rd international symposium for design and technology in electronic packaging (SIITME) (pp. 292–295).

  • Isufi, E., Loukas, A., Simonetto, A., & Leus, G. (2017). Autoregressive moving average graph filtering. IEEE Transactions on Signal Processing, 65, 274–288.

    Article  MathSciNet  Google Scholar 

  • Kon, J., Yamashita, Y., Tanaka, T., Tashiro, A., & Daiguji, M. (2013). Practical application of model identification based on ARX models with transfer functions. Control Engineering Practice, 21, 195–203.

    Article  Google Scholar 

  • Kuo, S. M., & Wu, H. T. (2005). Nonlinear adaptive bilinear filters for active noise control systems. IEEE Transactions on Circuits and Systems, I(52), 617–624.

    Article  Google Scholar 

  • Kuruogylu, E. E. (2002). Nonlinear least \(l_p\)-norm filters for nonlinear autoregressive \(\alpha \)-stable processes. Digital Signal Processing, 12, 119–142.

    Article  Google Scholar 

  • Kuruogylu, E. E., Rayner, P. J. W., & Fitzgerald, W. J. (1998). Least \(l_p\)-norm impulsive noise cancellation with polynomial flters. Signal Processing, 69, 1–14.

    Article  Google Scholar 

  • Le, D. C., Zhang, J., & Pang, Y. (2018). A bilinear functional link artificial neural network filter for nonlinear active noise control and its stability condition. Applied Acoustics, 132, 19–25.

    Article  Google Scholar 

  • Li, M., & Liu, X. (2018). The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Signal Processing, 147, 23–34.

    Article  Google Scholar 

  • Li, M., Liu, X., & Ding, F. (2017). The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive moving average noise. Journal of The Franklin Institute, 354, 4861–4881.

    Article  MathSciNet  Google Scholar 

  • Lim, C., McAleer, M., & Min, J. C. H. (2009). ARMAX modelling of international tourism demand. Mathematics and Computers in Simulation, 79, 2879–2888.

    Article  MathSciNet  Google Scholar 

  • Lu, L., Zhao, H., & Chen, B. (2016). Improved-variable-forgetting-factor recursive algorithm based on the logarithmic cost for Volterra system identification. IEEE Transactions on Circuits and Systems, II(63), 588–592.

    Google Scholar 

  • Lu, L., Zhao, H., & Chen, B. (2016). Collaborative adaptive Volterra filters for nonlinear system identification in \(\alpha \)-stable noise environments. Journal of The Franklin Institute, 353, 4500–4525.

    Article  MathSciNet  Google Scholar 

  • Lu, L., Zhao, H., Wang, W., & Yu, Y. (2015). Performance analysis of the robust diffusion normalized least mean \(p\)-power algorithm. IEEE Transactions on Circuits and Systems, II(65), 2047–2051.

    Google Scholar 

  • Paleologu, C., Benesty, J., & Ciochina, S. (2017). An NLMS algorithm for the identification of bilinear forms. In 25th European signal processing conference (EUSIPCO) (pp. 2689–2693).

  • Paleologu, C., Benesty, J., Iliescu, C. E., Stanciu, C., Anghel, C., & Ciochina, S. (2018). A proportionate NLMS algorithm for the identification of sparse bilinear forms. In International conference on telecommunications (pp. 1–5).

  • Paleologu, C., Benesty, J., & Ciochina, S. (2018). Adaptive filtering for the identification of bilinear forms. Digital Signal Processing, 75, 153–167.

    Article  MathSciNet  Google Scholar 

  • Pi, M. (2006). Improve maximum likelihood estimation for subband GGD parameters. Pattern Recognition Letters, 27, 1710–1713.

    Article  Google Scholar 

  • Shao, M., & Nikias, C. L. (1993). Signal processing with fractional lower ordermoments: Stable processes and their applications. Proceedings of the IEEE, 81, 986–1010.

    Article  Google Scholar 

  • Tan, L., Dong, C., & Du, S. (2016). On implementation of adaptive bilinear filters for nonlinear active noise control. Applied Acoustics, 106, 122–128.

    Article  Google Scholar 

  • Wang, W., Zhao, H., Lu, L., & Yu, Y. (2019). Robust nonlinear adaptive filter based on kernel risk-sensitive loss for bilinear forms. Circuits, Systems and Signal Processing, 38, 1876–1888.

    Article  MathSciNet  Google Scholar 

  • Weng, B., & Barner, K. E. (2005). Nonlinear system identification in impulsive environments. IEEE Transactions on Signal Processing, 53, 2588–2594.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the National Science Foundation of P.R. China under Grant 61701327 and China Postdoctoral Science Foundation Funded Project under Grant 2018M640916.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Yu, Y. \({\mathcal {L}}_p\)-norm of the LMS algorithm for bilinear forms with \(\alpha \)-stable processes. Multidim Syst Sign Process 31, 191–203 (2020). https://doi.org/10.1007/s11045-019-00659-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00659-2

Keywords