Skip to main content

Factorizations for a class of multivariate polynomial matrices

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates how to factorize a class of multivariate polynomial matrices. We prove that an \(l\times m\) multivariate polynomial matrix admits a matrix factorization with respect to a given polynomial if the polynomial and all the \((l-1)\times (l-1)\) reduced minors of the matrix generate a unit ideal. This result is a generalization of a theorem in Liu et al. (Circuits Syst Signal Process 30(3):553–566, 2011). Based on three main theorems presented in the paper and a constructive algorithm proposed by Lin et al. (Circuits Syst Signal Process 20(6):601–618, 2001), we give an algorithm which can be used to factorize more multivariate polynomial matrices. In addition, an illustrative example is given to show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bose, N. (1982). Applied multidimensional systems theory. New York: Van Nostrand Reinhold.

    MATH  Google Scholar 

  • Bose, N., Buchberger, B., & Guiver, J. (2003). Multidimensional systems theory and applications. Dordrecht: Kluwer.

    Google Scholar 

  • Brown, W. (1993). Matrices over commutative rings. New York: Marcel Dekker Inc.

    MATH  Google Scholar 

  • Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universitat Innsbruck, Austria.

  • Charoenlarpnopparut, C., & Bose, N. (1999). Multidimensional FIR filter bank design using Gröbner bases. IEEE Transactions on Circuits and Systems II: Analog Digital Signal Processing, 46(12), 1475–1486.

    Article  Google Scholar 

  • Cox, D., Little, J., & O’shea, D. (2007). Ideals, varieties, and algorithms. Undergraduate texts in mathematics (third ed.). New York: Springer.

    Book  Google Scholar 

  • Decker, W., Greuel, G. M., Pfister, G., & Schoenemann, H. (2016). SINGULAR 4.0.3. a computer algebra system for polynomial computations, FB Mathematik der Universitaet, D-67653 Kaiserslautern. https://www.singular.uni-kl.de/.

  • Decker, W., & Lossen, C. (2006). Computing in algebraic geometry, algorithms and computation in mathematics. Berlin: Springer.

    MATH  Google Scholar 

  • Eisenbud, D. (2013). Commutative algebra: with a view toward algebraic geometry. New York: Springer.

    MATH  Google Scholar 

  • Fabiańska, A., & Quadrat, A. (2006). Applications of the Qullen-Suslin theorem to multidimensional systems theory. In H. Park & G. Regensburger (Eds.), Gröbner bases in control theory and signal processing (pp. 23–106). Berlin: Walter de Gruyter.

    MATH  Google Scholar 

  • Fabiańska, A., & Quadrat, A. (2007). A Maple implementation of a constructive version of the Quillen-Suslin theorem. https://wwwb.math.rwth-aachen.de/QuillenSuslin/.

  • Guan, J., Li, W., & Ouyang, B. (2018). On rank factorizations and factor prime factorizations for multivariate polynomial matrices. Journal of Systems Science and Complexity, 31(6), 1647–1658.

    Article  MathSciNet  Google Scholar 

  • Guan, J., Li, W., & Ouyang, B. (2019). On minor prime factorizations for multivariate polynomial matrices. Multidimensional Systems and Signal Processing, 30, 493–502.

    Article  MathSciNet  Google Scholar 

  • Guiver, J., & Bose, N. (1982). Polynomial matrix primitive factorization over arbitrary coefficient field and related results. IEEE Transactions on Circuits and Systems, 29(10), 649–657.

    Article  MathSciNet  Google Scholar 

  • Lin, Z. (1988). On matrix fraction descriptions of multivariable linear n-D systems. IEEE Transactions on Circuits and Systems, 35(10), 1317–1322.

    Article  MathSciNet  Google Scholar 

  • Lin, Z. (1992). On primitive factorizations for 3-D polynomial matrices. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 39(12), 1024–1027.

    Article  MathSciNet  Google Scholar 

  • Lin, Z. (1993). On primitive factorizations for n-D polynomial matrices. In IEEE International symposium on circuits and systems, (pp. 601–618).

  • Lin, Z. (1999a). Notes on n-D polynomial matrix factorizations. Multidimensional Systems and Signal Processing, 10(4), 379–393.

    Article  MathSciNet  Google Scholar 

  • Lin, Z. (1999b). On syzygy modules for polynomial matrices. Linear Algebra and its Applications, 298(1–3), 73–86.

    Article  MathSciNet  Google Scholar 

  • Lin, Z. (2001). Further results on n-D polynomial matrix factorizations. Multidimensional Systems and Signal Processing, 12(2), 199–208.

    Article  MathSciNet  Google Scholar 

  • Lin, Z., & Bose, N. (2001). A generalization of Serre’s conjecture and some related issues. Linear Algebra and its Applications, 338(1), 125–138.

    Article  MathSciNet  Google Scholar 

  • Lin, Z., Boudellioua, M., & Xu, L. (2006). On the equivalence and factorization of multivariate polynomial matrices. In Proceeding of the IEEE ISCAS, (pp. 4911–4914). Kos, Greece.

  • Lin, Z., Xu, L., & Fan, H. (2005). On minor prime factorizations for n-D polynomial matrices. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(9), 568–571.

    Article  Google Scholar 

  • Lin, Z., Ying, J., & Xu, L. (2001). Factorizations for n-D polynomial matrices. Circuits, Systems, and Signal Processing, 20(6), 601–618.

    Article  MathSciNet  Google Scholar 

  • Liu, J., Li, D., & Wang, M. (2011). On general factorizations for n-D polynomial matrices. Circuits Systems and Signal Processing, 30(3), 553–566.

    Article  MathSciNet  Google Scholar 

  • Liu, J., Li, D., & Zheng, L. (2014). The Lin-Bose problem. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(1), 41–43.

    Article  Google Scholar 

  • Liu, J., & Wang, M. (2010). Notes on factor prime factorizations for n-D polynomial matrices. Multidimensional Systems and Signal Processing, 21(1), 87–97.

    Article  MathSciNet  Google Scholar 

  • Liu, J., & Wang, M. (2013). New results on multivariate polynomial matrix factorizations. Linear Algebra and its Applications, 438(1), 87–95.

    Article  MathSciNet  Google Scholar 

  • Liu, J., & Wang, M. (2015). Further remarks on multivariate polynomial matrix factorizations. Linear Algebra and its Applications, 465(465), 204–213.

    Article  MathSciNet  Google Scholar 

  • Logar, A., & Sturmfels, B. (1992). Algorithms for the Quillen-Suslin theorem. Journal of Algebra, 145(1), 231–239.

    Article  MathSciNet  Google Scholar 

  • Lu, D., Ma, X., & Wang, D. (2017). A new algorithm for general factorizations of multivariate polynomial matrices. In Proceedings of international symposium on symbolic and algebraic computation, (pp. 277–284).

  • Morf, M., Levy, B., & Kung, S. (1977). New results in 2-D systems theory, part I: 2-D polynomial matrices, factorization, and coprimeness. Proceedings of the IEEE, 64(6), 861–872.

    Article  Google Scholar 

  • Park, H. (1995). A computational theory of Laurent polynomial rings and multidimensional FIR systems. Ph.D. thesis, University of California at Berkeley.

  • Pommaret, J. (2001). Solving Bose conjecture on linear multidimensional systems. In European control conference, (pp. 1653–1655). IEEE, Porto, Portugal.

  • Quillen, D. (1976). Projective modules over polynomial rings. Inventiones Mathematicae, 36(1), 167–171.

    Article  MathSciNet  Google Scholar 

  • Serre, J. (1955). Faisceaux algébriques cohérents. Annals of Mathematics, 61(2), 197–278.

    Article  MathSciNet  Google Scholar 

  • Strang, G. (2010). Linear algebra and its applications. New York: Academic Press.

    MATH  Google Scholar 

  • Suslin, A. (1976). Projective modules over polynomial rings are free. Soviet Mathematics Doklady, 17, 1160–1164.

    MATH  Google Scholar 

  • Wang, M. (2007). On factor prime factorization for n-D polynomial matrices. IEEE Transactions on Circuits and Systems, 54(6), 1398–1405.

    Article  MathSciNet  Google Scholar 

  • Wang, M., & Feng, D. (2004). On Lin-Bose problem. Linear Algebra and its Applications, 390(1), 279–285.

    Article  MathSciNet  Google Scholar 

  • Wang, M., & Kwong, C. (2005). On multivariate polynomial matrix factorization problems. Mathematics of Control, Signals, and Systems, 17(4), 297–311.

    Article  MathSciNet  Google Scholar 

  • Youla, D., & Gnavi, G. (1979). Notes on n-dimensional system theory. IEEE Transactions on Circuits and Systems, 26(2), 105–111.

    Article  MathSciNet  Google Scholar 

  • Youla, D., & Pickel, P. (1984). The Quillen-Suslin theorem and the structure of n-dimensional elementary polynomial matrices. IEEE Transactions on Circuits and Systems, 31(6), 513–518.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingkang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the Chinese Academy of Sciences Key Project QYZDJ-SSW-SYS022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Wang, D. & Xiao, F. Factorizations for a class of multivariate polynomial matrices. Multidim Syst Sign Process 31, 989–1004 (2020). https://doi.org/10.1007/s11045-019-00694-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00694-z

Keywords