Skip to main content

Advertisement

Log in

Secure data hiding by fruit fly optimization improved hybridized seeker algorithm

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The recent growth of World Wide Web (WWW) and development of the next-generation internet facilitates a huge amount of data being conveniently transmitted via wireless networks. The sensitive information transmitted is potentially vulnerable in the communication channel like wireless networks. Unauthorized users could potentially intercept and negatively exploit the true intent of the information being exchanged between legitimate users. The efficient steganography techniques are very useful to prevent such undesirable interception of information. In this work, we propose and evaluate an efficient image steganography using Fruit Fly Optimization hybridized Improved Seeker (FOIS) algorithm. The FOIS provides information security and safeguards the medical data to avoid medical related cybercrimes. FOIS efficiently determines the optimal locations of pixels adaptively in the spatial domain of the cover image. Initially, the cover image is divided into n blocks of \(8 \times 8\), on which a permutation combination is applied to find the number of blocks for further processing. This method improves the image quality and secures data. The secret messages are embedded in each block using optimal pixels selection and Least Significant Bit (LSB) of Discrete Cosine Transform coefficients. Moreover, in order to ensure seamless communication over an insecure communication channel, a dual cryptosystem model is developed which consist of the proposed steganography scheme and Rivest Cipher (RC4) cryptosystem. This work validates the security level of the stego image, and finally the performance is compared with state-of-the-art methods such as LSB, Particle Swarm Optimization and Genetic Algorithm. The performance assessment reveals that the proposed steganography model outperforms other optimization based approaches in terms of Peak Signal-to-Noise Ratio, embedding capacity and imperceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ambika, B., & Rajkumar, L. (2019). Secure medical image steganography through optimal pixel selection by EH-MB pipelined optimization technique. Health and Technology,. https://doi.org/10.1007/s12553-018-00289-x.

    Article  Google Scholar 

  • Aref, M., & Faez, K. (2017). Adaptive image steganography based on transform domain via genetic algorithm. Optik International Journal for Light and Electron Optics, 145, 158–168.

    Article  Google Scholar 

  • Aruna, M., Sikka, G., & Verma, H. K. (2017). A high capacity text steganography scheme based on LZW compression and color coding. Engineering Science and Technology an International Journal, 20, 72–79.

    Article  Google Scholar 

  • Banharnsakun, A. (2018). Artificial bee colony approach for enhancing LSB based image steganography. Multimedia Tools and Applications, 77, 27491–27504.

    Article  Google Scholar 

  • Bedi, P., Bansal, R., & Sehgal, P. (2013). Using PSO in a spatial domain based image hiding scheme with distortion tolerance. Computer Electrical Engineering, 39, 640–654.

    Article  Google Scholar 

  • Bin, L., Wang, M., Li, X., Tan, S., & Huang, J. (2015). A strategy of clustering modification directions in spatial image steganography. IEEE Transactions on Information Forensics and Security, 10, 1905–1917.

    Article  Google Scholar 

  • Bourbakis, N., & Alexopoulos, C. (1992). Picture data encryption using scan patterns. Pattern Recognition, 25, 567–581.

    Article  Google Scholar 

  • Carvalho, D., Lima, R., Silva, W. G. D., & Morais, A. H. O. (2017). Optimizing image steganography using particle Swarm optimization algorithm. International Journal of Computer Applications, 164, 1–5.

    Google Scholar 

  • Chan, C.-K., & Cheng, L. M. (2004). Hiding data in images by simple LSB substitution. Pattern Recognition, 37, 469–474.

    Article  Google Scholar 

  • Chandler, D. M., & Hemami, S. S. (2007). VSNR: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 16, 2284–2298.

    Article  MathSciNet  Google Scholar 

  • Changa, K.-C., Changa, C.-P., Huangb, P. S., & Tua, T.-M. (2008). A novel image steganographic method using Tri-way pixel-value differencing. Journal of Multimedia, 3, 37–44.

    Google Scholar 

  • Dai, C., Chen, W., Zhu, Y., & Zhang, X. (2009). Seeker optimization algorithm for optimal reactive power dispatch. IEEE Transactions on Power Systems, 24, 1218–1231.

    Google Scholar 

  • Dai, C., Seeker, W. C., & Zhu, Y. (2010). Seeker optimization algorithm digital IIR filter design. IEEE Transactions on Industrial Electronics, 57, 1710–1718.

    Google Scholar 

  • de Oca, M., Marco, A., Stutzle, T., Birattari, M., & Dorigo, M. (2009). Frankenstein’s PSO: A composite particle Swarm optimization algorithm. IEEE Transactions on Evolutionary Computation, 13, 1120–1132.

    Article  Google Scholar 

  • Dongqi, W., Chen, D., Ma, B., Xu, L., & Zhang, J. (2017). A high capacity spatial domain data hiding scheme for medical images. Journal of Signal Processing Systems, 87, 215–227.

    Article  Google Scholar 

  • Gurunathan, K., & Rajagopalan, S. P. (2019). A stegano-visual cryptography technique for multimedia security. Multimedia Tools and Applications,. https://doi.org/10.1007/s11042-019-7471-1.

    Article  Google Scholar 

  • Haff, R. P., Jackson, E. S., Moscetti, R., & Massantini, R. (2015). Detection of fruit-fly infestation in olives using x-ray imaging: Algorithm development and prospects. American Journal of Agricultural Science and Technology, 4, 1–8.

    Google Scholar 

  • Harville, D. A., & Jeske, D. R. (1992). Mean squared error of estimation or prediction under a general linear model. American Statistical Association, 87, 724–731.

    Article  MathSciNet  Google Scholar 

  • Hayat, A.-D., & Al-Ani, A. (2016). A steganography embedding method based on edge identification and XOR coding. Expert Systems with Applications, 46, 293–306.

    Article  Google Scholar 

  • Jeruchim, M. C. (1984). Techniques for estimating the bit error rate in the simulation of digital communication systems. IEEE Journal on Selected Areas in Communications, 2, 153–170.

    Article  Google Scholar 

  • Jung, K.-H., & Yoo, K.-Y. (2014). High-capacity index based data hiding method. Multimedia Tools and Applications, 74, 2179–2193.

    Article  Google Scholar 

  • Kamdar, N. P., Kamdar, D. G., & Khandhar, D. N. (2013). Performance evaluation of LSB based steganography for optimization of PSNR and MSE. Journal of Information, Knowledge and Research in Electronics and Communication Engineering, 2, 505–508.

    Google Scholar 

  • Karakis, R., Guler, I., Caprazand, I., & Bilir, E. (2015). A novel fuzzy logic-based image steganography method to ensure medical data security. Computers in Biology and Medicine, 67, 172–183.

    Article  Google Scholar 

  • Kasim, T., Kurugollu, F., & Sezer, S. (2016). Spatio-temporal rich model-based video steganalysis on cross sections of motion vector planes. IEEE Transactions on Image Processing, 25, 3316–3328.

    Article  MathSciNet  Google Scholar 

  • Khan, M., Sajjad, M., Mehmood, I., Rho, S., & Baik, S. W. (2016). Image steganography using uncorrelated color space and its application for security of visual contents in online social networks. Future Generation Computer Systems, 86, 951–960.

    Google Scholar 

  • Kumar, S. V., & Srivastava, D. K. (2017). Comprehensive data hiding technique for discrete wavelet transform-based image Steganography using advance encryption standard. In Computing and network sustainability (pp. 353-360). Springer, Singapore.

  • Li, B., Huang, J., Wang, M., & Tan, S. (2014). Investigation of cost assignment in spatial image steganography. IEEE Transactions on Information Forensics and Security, 9, 1264–1277.

    Article  Google Scholar 

  • Liu, C.-L., & Liao, S.-R. (2008). High-performance JPEG steganography using complementary embedding strategy. Pattern Recognition, 41, 2945–2955.

    Article  Google Scholar 

  • Li, X., & Wang, J. (2007). A steganographic method based upon JPEG and particles swarm optimization algorithm. Information Sciences, 177, 3099–3109.

    Article  Google Scholar 

  • Malik, A., Sikka, G., & Verma, H. K. (2017). A high capacity text steganography scheme based on LZW compression and color coding. Engineering Science and Technology, An International Journal, 20, 72–79.

    Article  Google Scholar 

  • Mousa, A., & Hamad, A. (2006). Evaluation of the RC4 algorithm for data encryption. International Journal of Computer Science and Applications, 3, 44–56.

    Google Scholar 

  • Muhammad, K., Ahmad, J., Rehman, N. U., Jan, Z., & Sajjad, M. (2016). CISSKA-LSB: Color image steganography using stego key-directed adaptive LSB substitution method. Multimedia Tools and Applications, 76, 8597–8626.

    Article  Google Scholar 

  • Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the flexible Job-shop scheduling problem. Computers and Operations Research, 35, 3202–3212.

    Article  Google Scholar 

  • Sathya, V., Ramamurthy, A., Kumar, S., & Tamma, B. R. (2016). On improving SINR in LTE HetNet with D2D relays. London: Elsevier.

    Book  Google Scholar 

  • Shukla, A. K., Singh, A., Singh, B., & Kumar, A. (2017). A secure and high-capacity data-hiding method using compression, encryption and optimized pixel value differencing. IEEE Access, 6, 51130–51139.

    Article  Google Scholar 

  • Stubbs, A., & Uzuner, O. (2015). Annotating risk factors for heart disease in clinical narratives for diabetic patients. Journal of Biomedical Information, 58, 78–91.

    Article  Google Scholar 

  • Wang, Z., & Bovik, A. (2009). Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 26, 98–117.

    Article  Google Scholar 

  • Wang, R.-Z., Lin, C.-F., & Lin, J.-C. (2001). Image hiding by optimal LSB substitution and genetic algorithm. Pattern Recognition, 34, 671–683.

    Article  Google Scholar 

  • Wang, S., Ma, S., & Gao, W. (2010). SSIM based perceptual distortion rate optimization coding. Proceedings SPIE: Visual Communications and Image Processing, 7744, 1–10.

    Google Scholar 

  • Weber, A.G. (1997). The USC-SIPI image database: Version 5, Original release, Signal and Image Processing Institute, University of Southern California, Department of Electrical Engineering.

  • Westfeld, A., & Pfitzmann, A. (2000). Attacks on steganographic systems in Pfitzman Information Hiding. In: 3rd international workshop, of LNCS (pp. 61–76). Springer, Berlin.

  • Zakaria, A., Abdul, H., Mehdi, A. W., Wahid, A., Idris, I., Yamani, M., et al. (2018). High-capacity image steganography with minimum modified bits based on data mapping and LSB substitution. Applied Science, 8, 1–19.

    Article  Google Scholar 

  • Zhang, X. (2012). Separable reversible data hiding in encrypted image. IEEE Transactions on Information Forensics and Security, 7, 826–832.

    Article  Google Scholar 

  • Zhang, X., Sun, Z., Tang, Z., Chunqiang, Y., & Wang, X. (2016). High capacity data hiding based on interpolated image. Multimedia Tools and Applications, 76, 9195–9218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Roselin Kiruba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roselin Kiruba, R., Sree Sharmila, T. Secure data hiding by fruit fly optimization improved hybridized seeker algorithm. Multidim Syst Sign Process 32, 405–430 (2021). https://doi.org/10.1007/s11045-019-00697-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00697-w

Keywords

Navigation