Skip to main content

Robust Direct position determination against sensor gain and phase errors with the use of calibration sources

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The direct position determination (DPD) method can provide high localization performance than conventional two-step localization methods. However, the existing DPD methods only consider the scenario of parameters of the receiving arrays, and the localization performance decreases dramatically when the array model is inaccurate in practice. This paper studies the problem for positioning a stationary emitter in the presence of sensor gain and phase errors (SGPEs) aided by calibration sources. To remove these negative effects caused by SGPEs, calibration sources with known positions are introduced. The extended relationship between parameters of calibration sources and errors is used to establish a structural objective function based on the maximum likelihood estimate. The calibration parameters are jointly optimized with target-related parameters and an alternating iterative algorithm is then developed to decouple the multidimensional search into several low-dimensional optimizations. We also derive the Cramér–Rao bound (CRB) to evaluate the performance of the proposed method. Simulation results demonstrate that the proposed method outperforms the existing DPD methods and two-step methods, which incorporates the error information, and the accuracy attains the associated CRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Amar, A., & Weiss, A. J. (2004). Analysis of the direct position determination approach in the presence of model errors. In Proceedings of the IEEE convention on electrical and electronics engineers (pp. 408–411). Tel Aviv: IEEE Press.

  • Amar, A., & Weiss, A. J. (2005). Dircet position determination of multiple radio signals. EURASIP Journal on Advance in Signal Processing, 2005(1), 81–84.

    Google Scholar 

  • Amar, A., & Weiss, A. J. (2006). Direct position determination in the presence of model errors—known waveforms. Digital Signal Processing, 16(1), 52–83.

    Google Scholar 

  • Amar, A., & Weiss, A. J. (2007). A decoupled algorithm for geolocation of multiple emitters. Signal Processing, 87, 2348–2359.

    MATH  Google Scholar 

  • Amar, A., & Weiss, A. J. (2008). Localization of narrowband radio emitters based on Doppler frequency shifts. IEEE Transactions on Signal Processing, 56(11), 5500–5508.

    MathSciNet  MATH  Google Scholar 

  • Bar-Shalom, O., & Weiss, A. J. (2013). Transponder-aided single platform geolocation. IEEE Transactions on Signal Processing, 61(5), 1239–1248.

    MathSciNet  MATH  Google Scholar 

  • Bar-Shalom, O., & Weiss, A. J. (2014). Emitter geolocation using single moving receiver. Signal Processing, 105, 70–83.

    Google Scholar 

  • Bialer, O., Raphaeli, D., & Weiss, A. J. (2013). Maximum-likelihood direct position estimation in dense multipath. IEEE Transactions on Vehicular Technology, 62(5), 2069–2079.

    Google Scholar 

  • Boonstra, A. J., & Van der Veen, A. J. (2003). Gain calibration methods for radio telescope arrays. IEEE Transactions on Signal Processing, 51(1), 25–38.

    Google Scholar 

  • Chan, F. K. W., So, H. C., Zheng, J., & Lui, K. W. K. (2008). Best linear unbiased estimator approach for time-of-arrival based localization. IET Signal Processing, 2(2), 156–162.

    Google Scholar 

  • Cheung, K. W., So, H. C., & Chan, Y. T. (2004). Least squares algorithms for time-of-arrival-based mobile location. IEEE Transactions on Signal Processing, 52(4), 1121–1128.

    MathSciNet  MATH  Google Scholar 

  • Cheung, K. W., So, H. C., Ma, W.-K., & Chan, Y. T. (2003). Received signal strength based mobile positioning via constrained weighted least squares. In IEEE international conference on acoustics (pp. 137–140).

  • Demissie, B., Oispuu, M., & Ruthotto, E. (2008). Localization of multiple sources with a moving array using subspace data fusion. In Proceedings of IEEE 11th international conference on information fusion (pp. 1–7).

  • Doğançay, K. (2005). Bearings-only target localization using total least squares. Signal Processing, 85(9), 1695–1710.

    MathSciNet  MATH  Google Scholar 

  • Ferréol, A., Larzabal, P., & Viberg, M. (2006). On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: Case of MUSIC. IEEE Transactions on Signal Processing, 54(3), 907–920.

    MATH  Google Scholar 

  • Ferréol, A., Larzabal, P., & Viberg, M. (2008). On the resolution probability of MUSIC in presence of modeling errors. IEEE Transactions on Signal Processing, 56(5), 1945–1953.

    MathSciNet  MATH  Google Scholar 

  • Ferréol, A., Larzabal, P., & Viberg, M. (2010). Statistical analysis of the MUSIC algorithm in the presence of modeling errors, taking into account the resolution probability. IEEE Transactions on Signal Processing, 58(8), 4156–4166.

    MathSciNet  MATH  Google Scholar 

  • Foy, W. H. (1976). Position-location solutions by Taylor-series estimation. IEEE Transactions on Aerospace and Electronic Systems, 12(2), 187–194.

    Google Scholar 

  • Friedlander, B., & Weiss, A. J. (1991). Direction finding in the presence of mutual coupling. IEEE Transactions on Antennas and Propagation, 39(3), 273–284.

    Google Scholar 

  • Gantmacher, F. R., et al. (1900). The theory of matrices. White River Junction: Chelsea Publishing Co.

    Google Scholar 

  • Hao, B. J., Li, Z., Si, J. B., Yin, W. Y., & Ren, Y. M. (2012). Passive multiple disjoint sources localization using TDOAs and GROAs in the presence of sensor location uncertainties. In IEEE international conference on communications (pp. 47–52).

  • Ho, K. C. (2008). On the use of a calibration emitter for source localization in the presence of sensor position uncertainty. IEEE Transactions on Signal Processing, 56(12), 5758–5772.

    MathSciNet  MATH  Google Scholar 

  • Ho, K. C., Lu, X., & Kovavisaruch, L. (2007). Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution. IEEE Transactions on Signal Processing, 55(2), 684–696.

    MathSciNet  MATH  Google Scholar 

  • Ho, K. C., & Sun, M. (2008). Passive source localization using time differences of arrival and gain ratios of arrival. IEEE Transactions on Signal Processing, 56(2), 464–477.

    MathSciNet  MATH  Google Scholar 

  • Ho, K. C., & Xu, W. (2004). An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 52(9), 2453–2463.

    MathSciNet  MATH  Google Scholar 

  • Hu, X. Q., Chen, H., Wang, Y. L., & Chen, J. W. (2011). A self-calibration algorithm for cross array in the presence of mutual coupling. Science on China Series F (Information Science), 54(4), 836–848.

    MATH  Google Scholar 

  • Jiang, W., Xu, C., Pei, L., & Yu, W. (2016). Multidimensional scaling-based TDOA localization scheme using an auxiliary line. IEEE Signal Processing Letters, 23(4), 546–550.

    Google Scholar 

  • Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Le, T.-K. (2016). Nobutaka ONO, Closed-form and near closed-form solutions for TOA-based joint source and sensor localization. IEEE Transactions on Signal Processing, 64(18), 4751–4766.

    MathSciNet  MATH  Google Scholar 

  • Li, J. Z., Guo, F. C., & Jiang, W. L. (2014a). Source localization and calibration using TDOA and FDOA measurements in the presence of sensor location uncertainty. Science China (Information Sciences), 4, 156–167.

    Google Scholar 

  • Li, J. Z., Guo, F. C., Yang, L., Jiang, W. L., & Pang, H. W. (2014b). On the use of calibration sensors in source localization using TDOA and FDOA measurements. Digital Signal Processing, 27(4), 33–43.

    Google Scholar 

  • Liang, J. L., Zeng, X. J., Wang, W. Y., & Chen, H. Y. (2011). L-shaped array-based elevation and azimuth direction finding in the presence of mutual coupling. Signal Processing, 91, 1319–1328.

    MATH  Google Scholar 

  • Liao, B., Chan, S. C., Huang, L., & Guo, C. T. (2016). Iterative methods for subspace and DOA estimation in nonuniform noise. IEEE Transactions on Signal Processing, 64, 3008–3020.

    MathSciNet  MATH  Google Scholar 

  • Lin, Z. Y., Han, T. R., Zheng, R. H., & Fu, M. (2016). Distributed localization for 2-D sensor networks with bearing-only measurements under switching topologies. IEEE Transactions on Signal Processing, 64(23), 6345–6359.

    MathSciNet  MATH  Google Scholar 

  • Lo, J., & Marple, S.L. (1987). Eigenstructure methods for array sensor localization. In IEEE international conference on acoustics, speech, and signal processing. IEEE.

  • Ma, Z. H., & Ho, K. C. (2014). A study on the effects of sensor position error and the placement of calibration emitter for source localization. IEEE Transactions on Wireless Communications, 13(10), 5440–5452.

    Google Scholar 

  • Mason, J. (2004). Algebraic two-satellite TOA/FOA position solution on an ellipsoidal Earth. IEEE Transactions on Aerospace and Electronic Systems, 40(3), 1087–1092.

    MathSciNet  Google Scholar 

  • Moler, C. B., & Stewart, G. W. (1973). An algorithm for generalized matrix eigenvalue problems. SIAM Journal on Numerical Analysis, 10(2), 241–256.

    MathSciNet  MATH  Google Scholar 

  • Nocedal, J., & Wright, S. J. (2000). Springer series in operations research and financial engineering: Numerical optimization (2nd ed., pp. 33–36). New York: Springer.

    Google Scholar 

  • Oispuu, M., & Nickel, U. (2010). Direct detection and position determination of multiple sources with intermittent emission. Signal Processing, 90(12), 3056–3064.

    MATH  Google Scholar 

  • Qi, C., Wang, Y., Zhang, Y., & Chen, H. (2005). DOA estimation and self-calibration algorithm for uniform circular array. Electronics Letters, 41(20), 1092–1094.

    Google Scholar 

  • Qin, T. Z., Lu, Z. Y., Bin, B., & Wang, D. M. (2018). A decoupled direct positioning algorithm for strictly noncircular sources based on doppler shifts and angle of arrival. IEEE Access, 6, 34449–34461.

    Google Scholar 

  • Qu, X., Xie, L., & Tan, W. (2017). Iterative constrained weighted least squares source localization using TDOA and FDOA measurements. IEEE Transaction on Signal Processing, 65(15), 3990–4003.

    MathSciNet  MATH  Google Scholar 

  • Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Google Scholar 

  • See, C. M. S. (1995). Method for array calibration in high-resolution sensor array processing. IEE Proceedings-Radar, Sonar and Navigation, 142(3), 90–96.

    Google Scholar 

  • Stoica, P., & Larsson, E. G. (2001). Comments on “linearization method for finding Cramér–Rao bounds in signal processing”. IEEE Transactions on Signal Processing, 49(12), 3168–3169.

    Google Scholar 

  • Stoica, P., & Nehorai, A. (1990). MUSIC, maximum likelihood, and Cramer–Rao bound: Further results and comparisons. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(12), 2140–2150.

    Google Scholar 

  • Sun, F. G., Gao, B., Chen, L. Z., & Lan, P. (2016). A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays. Sensors, 16, 1367.

    Google Scholar 

  • Sun, M., & Ho, K. C. (2011). An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties. IEEE Transactions on Signal Processing, 59(7), 3434–3440.

    MathSciNet  MATH  Google Scholar 

  • Tirer, T., & Weiss, A. J. (2013). High resolution direct position determination of radio frequency sources. IEEE Signal Processing Letters, 23(2), 192–196.

    Google Scholar 

  • Tomic, S., Beko, M., & Dinis, R. (2015). RSS-based localization in wireless sensor networks using convex relaxation: noncooperative and cooperative schemes. IEEE Transactions on Vehicular Technology, 64(5), 2037–2050.

    Google Scholar 

  • Torrieri, D. J. (2007). Statistical theory of passive location systems. IEEE Transactions on Aerospace and Electronic Systems, 20(2), 183–198.

    Google Scholar 

  • Tzafri, L., & Weiss, A. J. (2016). High-resolution direct position determination using MVDR. IEEE Transactions on Wireless Communications, 15(9), 6449–6461.

    Google Scholar 

  • Wang, B., Wang, Y., & Guo, Y. (2004). Mutual coupling calibration with instrumental sensors. Electronics Letters, 40(7), 373–374.

    Google Scholar 

  • Wang, D., & Wu, Y. (2010). Array errors active calibration algorithm and its improvement. Science on China Series F (Information Science), 53(5), 1016–1033.

    MathSciNet  Google Scholar 

  • Wang, D., & Wu, Y. (2015). Statistical performance analysis of direct position determination method based on Doppler shifts in presence of model errors. Multidimensional System and Signal Processing, 28, 149–182.

    MATH  Google Scholar 

  • Wang, D., Yin, J. X., Liu, R. R., Yu, H. Y., & Wang, Y. L. (2018). Performance analysis and improvement of direct position determination based on Doppler frequency shifts in presence of model errors: Case of known waveforms. Multidimensional System and Signal Processing, 30, 749–790.

    MathSciNet  MATH  Google Scholar 

  • Wang, D., Yu, H. Y., Wu, Z. D., & Wang, C. (2017). Performance analysis of the direct position determination method in the presence of array model errors. Sensors, 17(7), 1550–1590.

    Google Scholar 

  • Wang, G., Li, Y., & Ansari, N. (2013). A semidefinite relaxation method for source localization using TDOA and FDOA measurements. IEEE Transactions on Vehicular Technology, 62(2), 853–862.

    Google Scholar 

  • Watkins, D. S. (2010). Fundamentals of matrix computations (3rd ed.)., Pure and applied mathematics Hoboken: Wiley, Hoboken, NJ.

    MATH  Google Scholar 

  • Weiss, A. J. (2004). Direct position determination of narrowband radio frequency transmitters. IEEE Signal Processing Letters, 11(5), 513–516.

    Google Scholar 

  • Weiss, A. J. (2011). Direct geolocation of wideband emitters based on delay and Doppler. IEEE Transactions on Signal Processing, 59(6), 2513–2521.

    MathSciNet  MATH  Google Scholar 

  • Weiss, A. J., & Amar, A. (2005). Direct position determination of multiple radio signals. EURASIP Journal on Applied Signal Processing, 2005(1), 37–49.

    MATH  Google Scholar 

  • Weiss, A. J., & Amar, A. (2009). Direct geolocation of stationary wideband radio signal based on time delays and Doppler shifts. In IEEE workshop on statistical signal processing (pp. 101–104).

  • Wijnholds, S. J., & Van der Veen, A. J. (2009). Multisource self-calibration for sensor arrays. IEEE Transactions on Signal Processing, 57(9), 3512–3522.

    MathSciNet  MATH  Google Scholar 

  • Wu, G. Z., Zhang, M., & Guo, F. C. (2019). High-resolution direct position determination based on eigenspace using a single moving ULA. Signal, Image and Video Processing, 13, 887–894.

    Google Scholar 

  • Yang, L., & Ho, K. C. (2009). An approximately efficient TDOA localization algorithm in closed-form for locating multiple disjoint sources with erroneous sensor positions. IEEE Transactions on Signal Processing, 57(12), 4598–4615.

    MathSciNet  MATH  Google Scholar 

  • Yang, L., & Ho, K. C. (2010). Alleviating sensor position error in source localization using calibration emitters at inaccurate locations. IEEE Transactions on Signal Processing, 58(1), 67–83.

    MathSciNet  MATH  Google Scholar 

  • Yin, J. X., Wang, D., Wu, Y., & Tang, T. (2018). Single-step localization using multiple moving arrays in the presence of observer location errors. Signal Processing, 152, 392–410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The partial derivatives with respect to the parameters in (42) are given by

$$ \frac{{\partial {\varvec{\Psi}}(k)}}{{\partial \left\langle {\varvec{p}_{{}}^{{(\text{e})}} } \right\rangle_{i} }} = \left[ {\begin{array}{*{20}c} {\varvec{O}_{M \times D} } & {b_{1}^{{(\text{e})}}\varvec{\varGamma}_{1} \left(\frac{{\partial \varvec{a}_{1}^{{(\text{e})}} (\varvec{p}_{{}}^{{(\text{e})}} )}}{{\partial \left\langle {\varvec{p}_{{}}^{{(\text{e})}} } \right\rangle_{i} }} \cdot e^{{ - \text{j}\omega_{k} \tau_{1,1} (\varvec{p}_{{}}^{{(\text{e})}} )}} - \text{j}\omega_{k} e^{{ - \text{j}\omega_{k} \tau_{1,1} (\varvec{p}_{{}}^{{(\text{e})}} )}} \cdot \varvec{a}_{1}^{{(\text{e})}} (\varvec{p}_{{}}^{{(\text{e})}} ) \cdot \frac{{\partial \tau_{1,1} (\varvec{p}_{{}}^{{(\text{e})}} )}}{{\partial \left\langle {\varvec{p}_{{}}^{{(\text{e})}} } \right\rangle_{i} }}\right)} \\ {\varvec{O}_{M \times D} } & {b_{2}^{{(\text{e})}}\varvec{\varGamma}_{2} \left(\frac{{\partial \varvec{a}_{2}^{{(\text{e})}} (\varvec{p}_{{}}^{{(\text{e})}} )}}{{\partial \left\langle {\varvec{p}_{{}}^{{(\text{e})}} } \right\rangle_{i} }} \cdot e^{{ - \text{j}\omega_{k} \tau_{2,1} (\varvec{p}_{{}}^{{(\text{e})}} )}} - \text{j}\omega_{k} e^{{ - \text{j}\omega_{k} \tau_{2,1} (\varvec{p}_{{}}^{{(\text{e})}} )}} \cdot \varvec{a}_{2}^{{(\text{e})}} (\varvec{p}_{{}}^{{(\text{e})}} ) \cdot \frac{{\partial \tau_{2,1} (\varvec{p}_{{}}^{{(\text{e})}} )}}{{\partial \left\langle {\varvec{p}_{{}}^{{(\text{e})}} } \right\rangle_{i} }}\right)} \\ \vdots & \vdots \\ {\varvec{O}_{M \times D} } & {b_{Q}^{{(\text{e})}}\varvec{\varGamma}_{Q} \left(\frac{{\partial \varvec{a}_{Q}^{{(\text{e})}} (\varvec{p}_{{}}^{{(\text{e})}} )}}{{\partial \left\langle {\varvec{p}_{{}}^{{(\text{e})}} } \right\rangle_{i} }} \cdot e^{{ - \text{j}\omega_{k} \tau_{Q,1} (\varvec{p}_{{}}^{{(\text{e})}} )}} - \text{j}\omega_{k} e^{{ - \text{j}\omega_{k} \tau_{Q,1} (\varvec{p}_{{}}^{{(\text{e})}} )}} \cdot \varvec{a}_{Q}^{{(\text{e})}} (\varvec{p}_{{}}^{{(\text{e})}} ) \cdot \frac{{\partial \tau_{Q,1} (\varvec{p}_{{}}^{{(\text{e})}} )}}{{\partial \left\langle {\varvec{p}_{{}}^{{(\text{e})}} } \right\rangle_{i} }}\right)} \\ \end{array} } \right],\;\;(i = 1,2,3). $$
(A.1)

where

$$ \frac{{\partial \tau_{q,1} (\varvec{p}_{{}}^{{(\text{e})}} )}}{{\partial \left\langle {\varvec{p}_{{}}^{{(\text{e})}} } \right\rangle_{i} }} = \frac{1}{c}\left( {\frac{{\left\langle {\varvec{p}_{{}}^{{(\text{e})}} - \varvec{s}_{q} } \right\rangle_{i} }}{{||\varvec{p}_{{}}^{{(\text{e})}} - \varvec{s}_{q} | |}} - \frac{{\left\langle {\varvec{p}_{{}}^{{(\text{e})}} - \varvec{s}_{ 1} } \right\rangle_{i} }}{{||\varvec{p}_{{}}^{{(\text{e})}} - \varvec{s}_{1} | |}}} \right). $$
(A.2)

The derivative of the array response \( \varvec{a}_{l}^{{(\text{e})}} (\varvec{p}_{{}}^{{(\text{e})}} ) \) with respect to \( \varvec{p}_{{}}^{{(\text{e})}} \) can be obtained from the array geometries directly.

$$ \begin{aligned} \hfill \\ \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}l} {\frac{{\partial {\varvec{\Psi}}(k)}}{{\partial \left\langle {\text{Re} (\tilde{\varvec{b}}^{{(\text{e})}} )} \right\rangle_{q - 1} }} = \left[ {\begin{array}{*{20}c} {\varvec{O}_{(M(q - 1)) \times D} } & {\varvec{O}_{(M(q - 1)) \times 1} } \\ {\varvec{O}_{M \times D} } & {e^{{ - \text{j}\omega_{k} \tau_{q,1} (\varvec{p}_{{}}^{{(\text{e})}} )}} \cdot\varvec{\varGamma}_{q} \varvec{a}_{q}^{{(\text{e})}} (\varvec{p}_{{}}^{{(\text{e})}} )} \\ {\varvec{O}_{(M(Q - q)) \times D} } & {\varvec{O}_{(M(Q - q)) \times 1} } \\ \end{array} } \right],} \hfill \\ {\frac{{\partial {\varvec{\Psi}}(k)}}{{\partial \left\langle {\text{Im} (\tilde{\varvec{b}}^{{(\text{e})}} )} \right\rangle_{q - 1} }} = \text{j}\frac{{\partial {\varvec{\Psi}}(k)}}{{\partial \left\langle {\text{Re} (\tilde{\varvec{b}}^{{(\text{e})}} )} \right\rangle_{q - 1} }}} \hfill \\ \end{array} } & {\quad (q = 2,3, \ldots ,Q).} \\ \end{array} } \right. \hfill \\ \end{aligned} $$
(A.3)
$$ \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}l} {\frac{{\partial {\varvec{\Psi}}(k)}}{{\partial \left\langle {\text{Re} (\tilde{\varvec{b}}_{{}}^{{(\text{c})}} )} \right\rangle_{(d - 1)(Q - 1) + (q - 1)} }}} \\{\qquad= \left[ {\begin{array}{*{20}c} {\varvec{O}_{(M(q - 1)) \times (d - 1)} } & {\varvec{O}_{(M(q - 1)) \times 1} } & {\varvec{O}_{(M(q - 1)) \times (D - d + 1)} } \\ {\varvec{O}_{M \times (d - 1)} } & {b_{q,d}^{{(\text{c})}} e^{{ - \text{j}\omega_{k} \tau_{q,1} (\varvec{p}_{D}^{{(\text{c})}} )}}\varvec{\varGamma}_{q} \varvec{a}_{q,d}^{{(\text{c})}} (\varvec{p}_{d}^{{(\text{c})}} )} & {\varvec{O}_{M \times (D - d + 1)} } \\ {\varvec{O}_{(M(Q - q)) \times (d - 1)} } & {\varvec{O}_{(M(Q - q)) \times 1} } & {\varvec{O}_{(M(Q - q)) \times (D - d + 1)} } \\ \end{array} } \right]} \hfill \\ {\frac{{\partial {\varvec{\Psi}}(k)}}{{\partial \left\langle {\text{Im} (\tilde{\varvec{b}}_{{}}^{{(\text{c})}} )} \right\rangle_{(d - 1)(Q - 1) + (q - 1)} }} = \text{j}\frac{{\partial {\varvec{\Psi}}(k)}}{{\partial \left\langle {\text{Re} (\tilde{\varvec{b}}^{{(\text{e})}} )} \right\rangle_{(d - 1)(Q - 1) + (q - 1)} }},} \hfill \\ \end{array} } & {\quad \left( \begin{aligned} d = 1,2, \ldots ,D \hfill \\ q = 2,3, \ldots ,Q \hfill \\ \end{aligned} \right)} \\ \end{array} } \right. $$
(A.4)
$$ \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}l} {\frac{{\partial {\varvec{\Psi}}(k)}}{{\partial \left\langle {\text{Re} (\tilde{\varvec{\rho }})} \right\rangle_{(q - 1)(M - 1) + (m - 1)} }} = \left[ {\begin{array}{*{20}c} {\varvec{O}_{(M(q - 1)) \times (D + 1)} } \\ {\varvec{i}_{M}^{(m)} \varvec{A}_{q}^{{}} {\varvec{\Upsilon}}_{q} (k)} \\ {\varvec{O}_{(M(Q - q)) \times (D + 1)} } \\ \end{array} } \right]} \hfill \\ {\frac{{\partial {\varvec{\Psi}}(k)}}{{\partial \left\langle {\text{Im} (\tilde{\varvec{\rho }})} \right\rangle_{(q - 1)(M - 1) + (m - 1)} }} = \text{j}\frac{{\partial {\varvec{\Psi}}(k)}}{{\partial \left\langle {\text{Re} (\tilde{\varvec{\rho }})} \right\rangle_{(q - 1)(M - 1) + (m - 1)} }},} \hfill \\ \end{array} } & {\quad \left( \begin{aligned} m = 2,3, \ldots ,M \hfill \\ q = 1,2, \ldots ,Q \hfill \\ \end{aligned} \right)} \\ \end{array} } \right. $$
(A.5)

After some algebraic manipulations, we can obtain the sub-blocks of the matrices in (24), (31) and (44) using the above derivations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Wang, D., Yang, B. et al. Robust Direct position determination against sensor gain and phase errors with the use of calibration sources. Multidim Syst Sign Process 31, 1435–1468 (2020). https://doi.org/10.1007/s11045-020-00716-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00716-1

Keywords