Skip to main content

A refined PCPF algorithm for estimating the parameters of multicomponent polynomial-phase signals

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers the parameter estimation of multicomponent polynomial-phase signals (mc-PPSs) with orders greater than two. The proposed method combines the product cubic phase function (PCPF) and high-order ambiguity function (HAF) when the mc-PPS orders exceed three. In the proposed method, the HAF is first applied to the observed mc-PPS to produce a cubic phase signal. Second, the algorithm is modified to estimate the parameters of mc-PPS using the CPF. To obtain accurate estimates of the two highest-order parameters (i.e., \( a_{P} \) and \( a_{P - 1} \) of each component), all possible \( a_{P} \) and \( a_{P - 1} \) must be obtained in this step in all combinations of the instantaneous frequencies; then, the maximum absolute value of all sum values must be identified by dechirping with all possible \( a_{P} \) and \( a_{P - 1} \). In addition, non-uniformly-spaced signal sample methods are used to employ fast Fourier transformation in the CPF. The proposed method is different from the PCPF–HAF method proposed by other researchers; it is referred to as the improved PCPF–HAF method and can remedy the shortcomings of the traditional method when estimating mc-PPS parameters. Additionally, the PCPF–HAF method cannot be used to treat multicomponent third-order polynomial-phase signals, but the proposed method can treat them using non-uniformly-spaced signal sample methods. The cross-terms can also be restrained more effectively than with the CPF, resulting in higher accuracy of the estimated parameters and a lower signal-to noise ratio threshold. Theoretical analysis and simulations are presented to support these claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Cao, R., Ming, L., Zuo, L., et al. (2018). A new method for parameter estimation of high-order polynomial-phase signals. Signal Processing, 142(2018), 212–222.

    Article  Google Scholar 

  • Deng, Z., Xu, R., Zhang, Y., et al. (2016). Compound time-frequency domain method for estimating parameters of uniform-sampling polynomial-phase signals on the entire identifiable region. IET Signal Processing, 10(7), 743–751.

    Article  Google Scholar 

  • Djurović, I. (2017). QML-RANSAC: PPS and FM signals estimation in heavy noise environments. Signal Processing, 130, 142–151.

    Article  Google Scholar 

  • Djurović, I., & Simeunović, M. (2015). Parameter estimation of non-uniform sampled polynomial-phase signals using the HOCPF-WD. Signal Processing, 106, 253–258.

    Article  Google Scholar 

  • Djurović, I., Simeunović, M., & Djukanović, S. (2012). A hybrid CPF-HAF estimation of polynomial-phase signals: Detailed statistical analysis. IEEE Transactions on Signal Processing, 60(10), 5010–5023.

    Article  MathSciNet  Google Scholar 

  • Djurović, I., & Stanković, L. (2012). STFT-based estimator of polynomial phase signals. Signal Processing, 92(11), 2769–2774.

    Article  Google Scholar 

  • Djurović, I., & Stanković, L. (2014). Quasi-maximum-likelihood estimator of polynomial phase signals. IET Signal Processing, 8(4), 347–359.

    Article  Google Scholar 

  • Djurović, I., Wang, P., Simeunović, M., et al. (2018). Parameter estimation of coupled polynomial phase and sinusoidal FM signals. Signal Processing, 149(2018), 1–13.

    Article  Google Scholar 

  • Ioana, C., Mars, J.I., Serbanescu, A., Stankovic, S. (2010). Time–frequency-phase tracking approach: Application to underwater signals in a passive context. In Proceedings of ICASSP 2010, Dallas, USA.

  • Jing, F., Zhang, C., Si, W., et al. (2018). Polynomial phase estimation based on adaptive short-time fourier transform. Sensors, 18(2), 568–580.

    Article  Google Scholar 

  • McKilliam, R. G., Quinn, B. G., et al. (2014). Polynomial phase estimation by least phase unwrapping. IEEE Transactions on Signal Processing, 62(8), 1962–1975.

    Article  MathSciNet  Google Scholar 

  • O’ Shea, P. (2010). On refining polynomial phase signal parameter estimates. IEEE Transactions on Aerospace and Electronic Systems, 46(3), 978–987.

    Article  Google Scholar 

  • O’Shea, P. (2002). A new technique for estimating instantaneous frequency rate. IEEE Signal Processing Letters, 9(8), 251–252.

    Article  Google Scholar 

  • O’Shea, P. (2012). Improving polynomial phase parameter estimation by using non-uniformly spaced signal sample methods. IEEE Transactions on Signal Processing, 60(7), 3405–3414.

    Article  MathSciNet  Google Scholar 

  • Ou, G. J., Yang, S. Z., et al. (2016). A refined estimator of multicomponent third-order polynomial phase signals. IEICE Transactions on Communications, E99.B(1), 143–151.

    Article  Google Scholar 

  • Ou, G., Zhao, P., Liu, S., et al. (2019). A sparse decomposition-based algorithm for estimating the parameters of polynomial phase signals. IEEE Access, 7(1), 20432–20441.

    Article  Google Scholar 

  • Peleg, S., & Friedlander, B. (1995). The discrete polynomial phase transform. IEEE Transactions on Signal Processing, 43(8), 1901–1914.

    Article  Google Scholar 

  • Raković, P., Simeunović, M., & Djurović, I. (2017). On improvement of joint estimation of DOA and PPS coefficients impinging on ULA. Signal Processing, 134, 209–213.

    Article  Google Scholar 

  • Simeunović, M., Djukanović, S., & Djurović, I. (2014). Quasi-maximum likelihood estimator of multiple polynomial-phase signals. In 2014 IEEE international conference onacoustics, speech and signal processing (ICASSP) (pp. 4200–4203).

  • Simeunović, M., & Djurović, I. (2011). CPF-HAF estimator of polynomial phase signals. Electronics Letters, 47(17), 965–966.

    Article  Google Scholar 

  • Simeunović, M., & Djurović, I. (2016). Parameter estimation of multicomponent 2D polynomial-phase signals using the 2D PHAF-based approach. IEEE Transactions on Signal Processing, 64(3), 771–782.

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Zhao, B., & Kang, J. (2015). Asymptotic statistical performance of local polynomial wigner distribution for the parameters estimation of cubic-phase signal with application in ISAR imaging of ship target. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3), 1087–1098.

    Google Scholar 

  • Xin, Z., & Liao, G. (2017). A fast ground moving target focusing method based on first-order discrete polynomial-phase transform. Digital Signal Processing, 60, 287–295.

    Article  Google Scholar 

Download references

Acknowledgment

This work is partially supported by youth project of science and technology research program of Chongqing Education Commission of China (Nos. KJQN201903112, KJQN201803109), and the National Natural Science Foundation of China (No. 61371164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojian Ou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the \( P{\text{th-order}} \) mc-PPSs with \( K \) components, after the initial parameter estimates,\( \left\{ {\widehat{a}_{m}^{q} ,m = 1, \ldots ,P,q = 1, \ldots ,K} \right\} \),are obtained, the \( k{\text{th}} \) component can be expressed as follows:

$$ y^{k} (n) = y_{r} (n) - \sum\limits_{q = 1,q \ne k}^{K} {\widehat{b}_{q} \exp \left\{ {j\sum\limits_{m = 0}^{P} {\widehat{a}_{m}^{q} } n^{m} } \right\}} $$
(29)

From (29) it follows that

$$ \begin{aligned} y^{k} (n) & = y_{r} (n) - \sum\limits_{q = 1,q \ne k}^{K} {\widehat{b}_{q} \exp \left( {j\sum\limits_{m = 0}^{P} {\widehat{a}_{m}^{q} } n^{m} } \right)} \\ & = \sum\limits_{q = 1}^{K} {b_{q} \exp \left( {j\sum\limits_{m = 0}^{P} {a_{m}^{q} } n^{m} } \right)} - \sum\limits_{q = 1,q \ne k}^{K} {\widehat{b}_{q} \exp \left( {j\sum\limits_{m = 0}^{P} {\widehat{a}_{m}^{q} } n^{m} } \right)} + \upsilon (n) \\ & = b_{k} \exp \left( {j\sum\limits_{m = 0}^{P} {a_{m}^{k} } n^{m} } \right) + \sum\limits_{q = 1,q \ne k}^{K} {\left( \begin{aligned} b_{q} \exp \left( {j\sum\limits_{m = 0}^{P} {a_{m}^{q} } n^{m} } \right) \hfill \\ - \widehat{b}_{q} \exp \left( {j\sum\limits_{m = 0}^{P} {\widehat{a}_{m}^{q} } n^{m} } \right) \hfill \\ \end{aligned} \right)} + \upsilon (n) \\ \end{aligned} $$
(30)

According to the literatures (O’ Shea 2010), a simple M-point moving average filter is represented as follows:

$$ \begin{aligned} y_{0} (m) & = \frac{1}{M}\sum\limits_{n = mM - (M - 1)/2}^{mM + (M - 1)/2} {y_{d} (n)} \\ & \quad m = - Q, - Q + 1, \ldots , + Q \\ \end{aligned} $$
(31)

where \( Q = \left\lfloor {(\tfrac{1}{2}((N/M) - 1))} \right\rfloor \), \( M \) is the number of samples in the moving average filter, \( y_{d} \left( n \right) \) is defined as

$$ \begin{aligned} y_{d} \left( n \right) & = y^{k} (n)\exp \left( { - j\sum\limits_{m = 1}^{P} {\widehat{a}_{m}^{k} n^{m} } } \right) \\ & = \left( {\begin{array}{*{20}l} {b_{k} \exp \left( {j\sum\limits_{m = 0}^{P} {a_{m}^{k} } n^{m} } \right)} \hfill \\ { + \sum\limits_{q = 1,q \ne k}^{K} {\left( \begin{aligned} b_{q} \exp \left( {j\sum\limits_{m = 0}^{P} {a_{m}^{q} } n^{m} } \right) \hfill \\ - \widehat{b}_{q} \exp \left( {j\sum\limits_{m = 0}^{P} {\widehat{a}_{m}^{q} } n^{m} } \right) \hfill \\ \end{aligned} \right)} + \upsilon (n)} \hfill \\ \end{array} } \right)\exp \left( { - j\sum\limits_{m = 1}^{P} {\widehat{a}_{m}^{k} n^{m} } } \right) \\ & = b_{k} \exp \left( {j\left( {a_{0}^{k} + \sum\limits_{m = 1}^{P} {\left( {a_{m}^{k} - \widehat{a}_{m}^{k} } \right)} n^{m} } \right)} \right) \\ & \quad + \sum\limits_{q = 1,q \ne k}^{K} {\left( {b_{q} \exp \left( {a_{0}^{k} + \sum\limits_{m = 1}^{P} {\left( {a_{m}^{k} - \widehat{a}_{m}^{k} } \right)} n^{m} } \right)} \right)} \\ & \quad - \sum\limits_{q = 1,q \ne k}^{K} {\left( {\widehat{b}_{q} \exp \left( {\widehat{a}_{0}^{k} + \sum\limits_{m = 1}^{P} {\left( {\widehat{a}_{m}^{k} - \widehat{a}_{m}^{k} } \right)} n^{m} } \right)} \right)} \\ & \quad + \upsilon (n)\exp \left( { - j\sum\limits_{m = 1}^{P} {\widehat{a}_{m}^{k} n^{m} } } \right) \\ \end{aligned} $$
(32)

Here define \( \upsilon '(n) \) and \( \delta \) as

$$ \left\{ \begin{aligned} & \upsilon '(n) = \upsilon (n)\exp \left( { - j\sum\limits_{m = 1}^{P} {\widehat{a}_{m}^{k} n^{m} } } \right) \\ & \delta = \sum\limits_{q = 1,q \ne k}^{K} {\left( \begin{aligned} b_{q} \exp \left( {a_{0}^{k} + \sum\limits_{m = 1}^{P} {\left( {a_{m}^{k} - \widehat{a}_{m}^{k} } \right)} n^{m} } \right) \hfill \\ - \widehat{b}_{q} \exp \left( {\widehat{a}_{0}^{k} + \sum\limits_{m = 1}^{P} {\left( {\widehat{a}_{m}^{k} - \widehat{a}_{m}^{k} } \right)} n^{m} } \right) \hfill \\ \end{aligned} \right)} + \upsilon '(n) \\ \end{aligned} \right. $$
(33)

So

$$ y_{d} (n){ = }b_{k} \exp \left( {j\left( {a_{0}^{k} + \sum\limits_{m = 1}^{P} {\left( {a_{m}^{k} - \widehat{a}_{m}^{k} } \right)} n^{m} } \right)} \right) + \delta $$
(34)

According to (29), \( \delta \) is the sum of interference terms, and it is very small when SNR is greater than SNR threshold. In addition, from (27) the refined estimates for the phase parameters can be obtained, as follows.

$$ \left\{ \begin{aligned} \widehat{a}_{{k_{f} }} & = \widehat{a}_{k} + \widehat{\delta }a_{k} /M^{k} ,k = 1,2, \ldots ,P \\ \widehat{a}_{{0_{f} }} & = \widehat{a}_{0} \\ \end{aligned} \right. $$
(35)

where \( \widehat{\delta }a_{k} \) can be computed according to

$$ \left[ {\widehat{a}_{0} ,\widehat{\delta }a_{1} ,\widehat{\delta }a_{2} , \ldots ,\widehat{\delta }a_{p} } \right]^{\text{T}} = ({\mathbf{G}}^{\text{T}} {\mathbf{G}})^{ - 1} {\mathbf{G}}^{\text{T}} {\mathbf{V}} $$
(36)

where

$$ \left\{ {\begin{array}{*{20}l} {{\mathbf{G}} = \left[ {\begin{array}{*{20}l} 1 \hfill & { - Q} \hfill & {( - Q)^{2} } \hfill & {( - Q)^{3} } \hfill \\ 1 \hfill & { - Q + 1} \hfill & {( - Q + 1)^{2} } \hfill & {( - Q + 1)^{3} } \hfill \\ \ldots \hfill & \ldots \hfill & \ldots \hfill & \ldots \hfill \\ 1 \hfill & Q \hfill & {Q^{2} } \hfill & {Q^{3} } \hfill \\ \end{array} } \right]} \hfill \\ {{\mathbf{V}} = \{ V_{i} (m),m = - Q, \ldots ,Q\} = {\text{unwrap}}(y_{0} (m))} \hfill \\ \end{array} } \right. $$
(37)

From (31)–(33) \( {\mathbf{G}} \) is determined by \( Q \, \),\( Q \, \) is determined by \( M \), \( M \) is a fixed value, and it is entirely unrelated to the initial estimated parameters, \( {\mathbf{V}} \) is related to the initial estimated parameters. Therefore the MSEs of the refined estimates, \( \widehat{a}_{{k_{f} }} ,\;\widehat{a}_{{0_{f} }} \),for the phase parameters are determined by the initial estimates for the phase parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, G., Hu, Y. & Wu, C. A refined PCPF algorithm for estimating the parameters of multicomponent polynomial-phase signals. Multidim Syst Sign Process 31, 1531–1552 (2020). https://doi.org/10.1007/s11045-020-00719-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00719-y

Keywords