Skip to main content

Advertisement

Log in

Mass classification of mammograms using fractal dimensions and statistical features

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

For classification of tumors in mammography, the major features are extracted from the segmented tumor. However, some details of the tumor margin, such as the spiculated parts, are eliminated in the segmentation step. The current study suggests a new approach for extracting the spiculated parts and tumor core. The proposed method segments the tumor by assessing the similarity of the pixels of the tumor core and dissimilarity of the spiculated parts. Then, the spiculated parts and the tumor core are combined to create the final segmentation. Next, the statistical features and fractal dimensions are extracted from the tumor. The fractal dimension is a measure of complexity of the tumor shape that is effective for discriminating between benign and malignant tumors. The simulation results show that the proposed method is more suitable than other methods. The area under the ROC curve and the accuracy of the proposed method on mini-MIAS were 0.9627 and 89.66% and for DDSM were 0.9777 and 93.50%, respectively. The results confirm the efficiency of the proposed method for extracting the mass core and spiculated parts. They also show that use of the fractal dimension increases the accuracy of classification and complements the other shape features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Abbas, Q., Celebi, M. E., & Garcia, I. F. (2013). Breast mass segmentation using region-based and edge-based methods in a 4-stage multiscale system. Biomedical Signal Processing and Control, 8(2), 204–214.

    Article  Google Scholar 

  • Abdar, M., & Makarenkov, V. (2019). Cwv-bann-svm ensemble learning classifier for an accurate diagnosis of breast cancer. Measurement, 146, 557–570.

    Article  Google Scholar 

  • Al-Najdawi, N., Biltawi, M., & Tedmori, S. (2015). Mammogram image visual enhancement, mass segmentation and classification. Applied Soft Computing, 35, 175–185.

    Article  Google Scholar 

  • Ansar, W., Shahid, A. R., Raza, B., & Dar, A. H. (2020). Breast cancer detection and localization using mobilenet based transfer learning for mammograms. In International symposium on intelligent computing systems (pp. 11–21). Berlin: Springer.

  • Arora, R., Rai, P. K., & Raman, B. (2020). Deep feature-based automatic classification of mammograms. Medical & Biological Engineering & Computing, 58, 1–13.

    Article  Google Scholar 

  • Ayubi, P., Setayeshi, S., & Rahmani, A. M. (2020). Deterministic chaos game: A new fractal based pseudo-random number generator and its cryptographic application. Journal of Information Security and Applications, 52, 102472.

    Article  Google Scholar 

  • Beheshti, S., Noubari, H. A., Fatemizadeh, E., & Khalili, M. (2016). Classification of abnormalities in mammograms by new asymmetric fractal features. Biocybernetics and Biomedical Engineering, 36(1), 56–65.

    Article  Google Scholar 

  • Beura, S., Majhi, B., & Dash, R. (2015). Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing, 154, 1–14.

    Article  Google Scholar 

  • Cancer. (2018). Key facts, world health organization. https://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 12 Sept 2018.

  • Cancer Facts CF, Figures. (2020). American cancer society: Cancer statistics. https://www.cancer.org/research/cancer-facts-statistics. Accessed July 2020.

  • Chaieb, R., & Kalti, K. (2019). Feature subset selection for classification of malignant and benign breast masses in digital mammography. Pattern Analysis and Applications, 22(3), 803–829.

    Article  MathSciNet  Google Scholar 

  • Chakraborty, J., Midya, A., Mukhopadhyay, S., Rangayyan, R. M., Sadhu, A., Singla, V., et al. (2019). Computer-aided detection of mammographic masses using hybrid region growing controlled by multilevel thresholding. Journal of Medical and Biological Engineering, 39(3), 352–366.

    Article  Google Scholar 

  • Chanda, P. B., & Sarkar, S. K. (2020). Detection and classification of breast cancer in mammographic images using efficient image segmentation technique. In Advances in control, signal processing and energy systems (pp. 107–117). Berlin: Springer.

  • Cheetham, A. H., & Hazel, J. E. (1969). Binary (presence-absence) similarity coefficients. Journal of Paleontology, 43, 1130–1136.

    Google Scholar 

  • Cheikhrouhou, I., Djemal, K., Sellami, D., Maaref, H., Derbel, N., & (2008) New mass description in mammographies. In First workshops on image processing theory, tools and applications, IPTA 2008 (pp. 1–5). IEEE.

  • Ciecholewski, M. (2017). Malignant and benign mass segmentation in mammograms using active contour methods. Symmetry, 9(11), 277.

    Article  Google Scholar 

  • Cordeiro, F. R., Santos, W. P., & Silva-Filho, A. G. (2016). An adaptive semi-supervised fuzzy growcut algorithm to segment masses of regions of interest of mammographic images. Applied Soft Computing, 46, 613–628.

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.

    Article  MATH  Google Scholar 

  • Dhahbi, S., Barhoumi, W., Kurek, J., Swiderski, B., Kruk, M., & Zagrouba, E. (2018). False-positive reduction in computer-aided mass detection using mammographic texture analysis and classification. Computer Methods and Programs in Biomedicine, 160, 75–83.

    Article  Google Scholar 

  • Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.

    Article  Google Scholar 

  • Domínguez, A. R., & Nandi, A. K. (2009). Toward breast cancer diagnosis based on automated segmentation of masses in mammograms. Pattern Recognition, 42(6), 1138–1148.

    Article  Google Scholar 

  • Forsyth, D., & Ponce, J. (2011). Computer vision: A modern approach. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Görgel, P., Sertbas, A., & Uçan, O. N. (2015). Computer-aided classification of breast masses in mammogram images based on spherical wavelet transform and support vector machines. Expert Systems, 32(1), 155–164.

    Article  Google Scholar 

  • Guliato, D., Rangayyan, R. M., de Carvalho, J. D., & Santiago, S. A. (2006). Spiculation-preserving polygonal modeling of contours of breast tumors. In: 28th annual international conference of the IEEE engineering in medicine and biology society, 2006. EMBS’06 (pp. 2791–2794). IEEE.

  • Guo, Q., Shao, J., & Ruiz, V. F. (2009). Characterization and classification of tumor lesions using computerized fractal-based texture analysis and support vector machines in digital mammograms. International Journal of Computer Assisted Radiology and Surgery, 4(1), 11.

    Article  Google Scholar 

  • Gupta, B., & Tiwari, M. (2017). A tool supported approach for brightness preserving contrast enhancement and mass segmentation of mammogram images using histogram modified grey relational analysis. Multidimensional Systems and Signal Processing, 28(4), 1549–1567.

    Article  Google Scholar 

  • Haralick, R. M., & Shapiro, L. G. (1992). Computer and robot vision (Vol. 1). New York: Addison-Wesley Reading.

    Google Scholar 

  • Haussler, D. (1999). Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California.

  • Heath, M., Bowyer, K., Kopans, D., Moore, R., & Kegelmeyer, W. P. (2000). The digital database for screening mammography. In Proceedings of the 5th international workshop on digital mammography (pp. 212–218). Medical Physics Publishing.

  • Huo, Z., Giger, M. L., Vyborny, C. J., Wolverton, D. E., & Metz, C. E. (2000). Computerized classification of benign and malignant masses on digitized mammograms: A study of robustness. Academic Radiology, 7(12), 1077–1084.

    Article  Google Scholar 

  • Karabatak, M. (2015). A new classifier for breast cancer detection based on naïve bayesian. Measurement, 72, 32–36.

    Article  Google Scholar 

  • Khodadadi, H., Khaki-Sedigh, A., Ataei, M., & Jahed-Motlagh, M. R. (2018). Applying a modified version of lyapunov exponent for cancer diagnosis in biomedical images: The case of breast mammograms. Multidimensional Systems and Signal Processing, 29(1), 19–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Lai, S. M., Li, X., & Biscof, W. (1989). On techniques for detecting circumscribed masses in mammograms. IEEE Transactions on Medical Imaging, 8(4), 377–386.

    Article  Google Scholar 

  • Lévy-Véhel, J., Lutton, E., & Tricot, C. (2005). Fractals in engineering. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Li, F., Shang, C., Li, Y., & Shen, Q. (2020). Interpretable mammographic mass classification with fuzzy interpolative reasoning. Knowledge-Based Systems, 191, 105279.

    Article  Google Scholar 

  • Lopes, R., & Betrouni, N. (2009). Fractal and multifractal analysis: A review. Medical image analysis, 13(4), 634–649.

    Article  Google Scholar 

  • Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156(3775), 636–638.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature (Vol. 173). New York: WH Freeman.

    Google Scholar 

  • Mohanty, A. K., Senapati, M. R., & Lenka, S. K. (2013). A novel image mining technique for classification of mammograms using hybrid feature selection. Neural Computing and Applications, 22(6), 1151–1161.

    Article  Google Scholar 

  • Nguyen, T. M., & Rangayyan, R. M. (2006). Shape analysis of breast masses in mammograms via the fractal dimension. In 27th annual international conference of the engineering in medicine and biology society, IEEE-EMBS 2005 (pp. 3210–3213). IEEE.

  • Normant, F., & Tricot, C. (1991). Method for evaluating the fractal dimension of curves using convex hulls. Physical Review A, 43(12), 6518.

    Article  MathSciNet  Google Scholar 

  • Oh, I. S., Lee, J. S., & Moon, B. R. (2004). Hybrid genetic algorithms for feature selection. IEEE Transactions on Pattern Analysis & Machine Intelligence, 11, 1424–1437.

    Google Scholar 

  • Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59.

    Article  Google Scholar 

  • Peitgen, H. O., Jürgens, H., & Saupe, D. (2006). Chaos and fractals: New frontiers of science. Berlin: Springer.

    MATH  Google Scholar 

  • Pezeshki, H., Rastgarpour, M., Sharifi, A., & Yazdani, S. (2019). Extraction of spiculated parts of mammogram tumors to improve accuracy of classification. Multimedia Tools and Applications, 78, 1–25.

    Article  Google Scholar 

  • Pham, T. D., & Ichikawa, K. (2013). Spatial chaos and complexity in the intracellular space of cancer and normal cells. Theoretical Biology and Medical Modelling, 10(1), 1–20.

    Article  Google Scholar 

  • Pruess, S. (1995). Some remarks on the numerical estimation of fractal dimension. Fractals in the earth sciences (pp. 65–75). Berlin: Springer.

  • Rampun, A., Scotney, B., Morrow, P., Wang, H., & Winder, J. (2018). Breast density classification using local quinary patterns with various neighbourhood topologies. Journal of Imaging, 4(1), 14.

    Article  Google Scholar 

  • Rangayyan, R. M., & Nguyen, T. M. (2007). Fractal analysis of contours of breast masses in mammograms. Journal of Digital Imaging, 20(3), 223–237.

    Article  Google Scholar 

  • Rouhi, R., & Jafari, M. (2016). Classification of benign and malignant breast tumors based on hybrid level set segmentation. Expert Systems with Applications, 46, 45–59.

    Article  Google Scholar 

  • Russ, J. C. (2016). The image processing handbook. Cambridge: CRC Press.

    Book  MATH  Google Scholar 

  • Russell, D. A., Hanson, J. D., & Ott, E. (1980). Dimension of strange attractors. Physical Review Letters, 45(14), 1175.

    Article  MathSciNet  Google Scholar 

  • Sahiner, B., Chan, H. P., Petrick, N., Helvie, M. A., & Hadjiiski, L. M. (2001). Improvement of mammographic mass characterization using spiculation measures and morphological features. Medical Physics, 28(7), 1455–1465.

    Article  Google Scholar 

  • Sanderson, B. G., Goulding, A., & Okubo, A. (1990). The fractal dimension of relative lagrangian motion. Tellus A, 42(5), 550–556.

    Article  Google Scholar 

  • Sharma, S., & Khanna, P. (2015). Computer-aided diagnosis of malignant mammograms using zernike moments and svm. Journal of Digital Imaging, 28(1), 77–90.

    Article  Google Scholar 

  • Shastri, A. A., Tamrakar, D., & Ahuja, K. (2018). Density-wise two stage mammogram classification using texture exploiting descriptors. Expert Systems With Applications, 99, 71–82.

    Article  Google Scholar 

  • Sickles, E. A. (1989). Breast masses: mammographic evaluation. Radiology, 173(2), 297–303.

    Article  Google Scholar 

  • Singh, V. K., Rashwan, H. A., Romani, S., Akram, F., Pandey, N., Sarker, M. M. K., et al. (2020). Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Systems with Applications, 139, 112855.

    Article  Google Scholar 

  • Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., et al. (1994). The mammographic image analysis society digital mammogram database. Exerpta Medica International Congress Series, 1069, 375–378.

    Google Scholar 

  • Tao, Y., Lo, S. C. B., Freedman, M. T., Makariou, E., & Xuan, J. (2010). Multilevel learning-based segmentation of ill-defined and spiculated masses in mammograms. Medical Physics, 37(11), 5993–6002.

    Article  Google Scholar 

  • Thawkar, S., & Ingolikar, R. (2018). Classification of masses in digital mammograms using firefly based optimization. International Journal of Image, Graphics & Signal Processing, 10(2), 25–33.

    Article  Google Scholar 

  • Vijayarajeswari, R., Parthasarathy, P., Vivekanandan, S., & Basha, A. A. (2019). Classification of mammogram for early detection of breast cancer using SVM classifier and hough transform. Measurement, 146, 800–805.

    Article  Google Scholar 

  • Wang, S., Rao, R. V., Chen, P., Zhang, Y., Liu, A., & Wei, L. (2017). Abnormal breast detection in mammogram images by feed-forward neural network trained by jaya algorithm. Fundamenta Informaticae, 151(1–4), 191–211.

    Article  MathSciNet  Google Scholar 

  • Wen, W., He, C., Zhang, Y., & Fang, Z. (2017). A novel method for image segmentation using reaction–diffusion model. Multidimensional Systems and Signal Processing, 28(2), 657–677.

    Article  MATH  Google Scholar 

  • Wessels, S., & van der Haar, D. (2020). Applying deep learning for the detection of abnormalities in mammograms. In: Information science and applications (pp. 201–210). Berlin: Springer.

  • Zhao, W., Xu, X., Zhu, Y., & Xu, F. (2018). Active contour model based on local and global gaussian fitting energy for medical image segmentation. Optik, 158, 1160–1169.

    Article  Google Scholar 

  • Zhao, Y., Chen, D., Xie, H., Zhang, S., & Gu, L. (2019). Mammographic image classification system via active learning. Journal of Medical and Biological Engineering, 39(4), 569–582.

    Article  Google Scholar 

  • Zyout, I., & Togneri, R. (2018). A computer-aided detection of the architectural distortion in digital mammograms using the fractal dimension measurements of bemd. Computerized Medical Imaging and Graphics, 70, 173–184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rastgarpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezeshki, H., Rastgarpour, M., Sharifi, A. et al. Mass classification of mammograms using fractal dimensions and statistical features. Multidim Syst Sign Process 32, 573–605 (2021). https://doi.org/10.1007/s11045-020-00749-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00749-6

Keywords

Navigation