Skip to main content
Log in

Stochastic automated search methods in cellular automata: the discovery of tens of thousands of glider guns

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

This paper deals with the spontaneous emergence of glider guns in cellular automata. An evolutionary search for glider guns with different parameters is described and other search techniques are also presented to provide a benchmark. We demonstrate the spontaneous emergence of an important number of novel glider guns discovered by an evolutionary algorithm. An automatic process to identify guns leads to a classification of glider guns that takes into account the number of emitted gliders of a specific type. We also show it is possible to discover guns for many other types of gliders. Significantly, all the found automata can be candidate to an automatic search for collision-based universal cellular automata simulating Turing machines in their space-time dynamics using gliders and glider guns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Notes

  1. http://www.ics.uci.edu/∼eppstein/ca/.

References

  • Adamatzky A (1998) Universal dymical computation in multi-dimensional excitable lattices. Int J Theor Phys 37:3069–3108

    Article  MATH  MathSciNet  Google Scholar 

  • Andre D, Koza JR, Bennett FH III, Keane MA (1999) Genetic programming III: Darwinian invention and problem solving. Morgan Kaufmann, San Francisco, CA

    MATH  Google Scholar 

  • Banks ER (1971) Information and transmission in cellular automata. PhD thesis, MIT

  • Bays C (1987) Candidates for the game of life in three dimensions. Complex Syst 1:373–400

    MATH  MathSciNet  Google Scholar 

  • Berlekamp E, Conway JH, Guy R (1982) Winning ways for your mathematical plays. Academic Press, New York

    MATH  Google Scholar 

  • Das R, Crutchfield JP, Mitchell M, Hanson JE (1995) Evolving globally synchronized cellular automata. In: Proceedings of the sixth international conference on genetic algorithms, pp 336–343

  • Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13:533–549

    Article  MATH  MathSciNet  Google Scholar 

  • Heudin JC (1996) A new candidate rule for the game of two-dimensional life. Complex Syst 10:367–381

    MATH  MathSciNet  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan

  • Hordijk W, Crutchfield JP, Mitchell M (1998) Mechanisms of emergent computation in cellular automata. In: Eiben AE, BSck T, Schoenauer M, Schwefel H-P (eds) Parallel problem solving from nature-V, vol 866. Springer-Verlag, London, UK, pp 344–353

  • Kennedy J, Eberhart C (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE conference on neural networks

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Langton CL (1990) Computation at the edge of chaos. Physica D 42:12–37

    Google Scholar 

  • Lindgren K, Nordahl M (1990) Universal computation in simple one dimensional cellular automata. Complex Syst 4:299–318

    MATH  MathSciNet  Google Scholar 

  • Lohn JD, Reggia JA (1997) Automatic discovery of self-replicating structures in cellular automata. IEEE Trans Evol Comput 1:165–178

    Article  Google Scholar 

  • Margolus N (1984) Physics-like models of computation. Physica D 10:81–95

    Article  MathSciNet  Google Scholar 

  • Martinez GJ, Adamatzky A, McIntosh HV (2006) Phenomenology of glider collisions in cellular automaton rule 54 and associated logical gates. Chaos, Solitons & Fractals 28(1):100–111

    Article  MATH  MathSciNet  Google Scholar 

  • Mitchell M, Hraber PT, Crutchfield JP (1993) Revisiting the edge of chaos: evolving cellular automate to perform computations. Complex Syst 7:89–130

    MATH  Google Scholar 

  • Mitchell M, Crutchfield JP, Hraber PT (1994) Evolving cellular automata to perform computations: mechanisms and impediments. Physica D 75:361–391

    Article  MATH  Google Scholar 

  • Morita K, Tojima Y, Katsunobo I, Ogiro T (2002) Universal computing in reversible and number-conserving two-dimensional cellular spaces. In: Adamatzky A (ed) Collision-based computing. Springer-Verlag, London, UK, pp 161–199

  • Packard NH (1988) Adaptation toward the edge of chaos. In: Kelso JAS, Mandell AJ, Shlesinger MF (eds) Dynamic patterns in complex systems, pp 293–301

  • Resnick M, Silverman B (1996) Exploring emergence. http://llk.media.mit.edu/projects/emergence/

  • Sapin E (2007) http://uncomp.uwe.ac.uk/sapin/gun

  • Sapin E, Bailleux O, Chabrier JJ (2003) Research of a cellular automaton simulating logic gates by evolutionary algorithms. In: EuroGP03 Lecture Notes in Computer Science, vol 2610, pp 414–423

  • Sapin E, Bailleux O, Chabrier JJ (2004a) Research of complex forms in the cellular automata by evolutionary algorithms. In: EA03 Lecture Notes in Computer Science, vol 2936, pp 373–400

  • Sapin E, Bailleux O, Chabrier JJ, Collet P (2004b) A new universal automata discovered by evolutionary algorithms. In: Gecco2004 Lecture Notes in Computer Science, vol 3102, pp 175–187

  • Sapin E, Bailleux O, Chabrier JJ, Collet P (2006) Demonstration of the universality of a new cellular automaton. In: Adamatzky A et al (eds) IJUC 2(3):79–103

  • Sapin E, Bailleux O, Chabrier J (2007) Research of complexity in cellular automata through evolutionary algorithms. Complex Syst 17(3):231–241

    MathSciNet  Google Scholar 

  • Sipper M (1997) Evolution of parallel cellular machines. In: Stauffer D (ed) Annual reviews of computational physics, V. World Scientific, Singapore, pp 243–285

  • Urfas J, Rechtman R, Enciso A (1997) Sensitive dependence on initial conditions for cellular automata. Chaos Interdiscip J Nonlinear Sci 7(4):688–693

    Article  Google Scholar 

  • Ventrella JJ (2006) A particle swarm selects for evolution of gliders in non-uniform 2d cellular automata. In: Artificial Life X: proceedings of the 10th international conference on the simulation and synthesis of living systems, pp 386–392

  • Von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana, IL

    Google Scholar 

  • Wolfram S (1984) Universality and complexity in cellular automata. Physica D 10:1–35

    Article  MathSciNet  Google Scholar 

  • Wolfram S (2002) A new kind of science. Wolfram Media, Inc., Illinois, USA

    MATH  Google Scholar 

  • Wolfram S, Packard NH (1985) Two-dimensional cellular automata. J Stat Phys 38:901–946

    Article  MATH  MathSciNet  Google Scholar 

  • Wolz D, de Oliveira PB (2008) Very effective evolutionary techniques for searching cellular automata rule spaces. J Cell Autom 3(4):289–312

    MATH  MathSciNet  Google Scholar 

  • Wuensche A (2005) Discrete dynamics lab (ddlab). http://www.ddlab.org

  • Wuensche A, Adamatzky A (2008) On spiral glider-guns in hexagonal cellular automata: activator-inhibitor paradigm. Int J Mod Phys C 17(7):1009–1026

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, Grant EP/E005241/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sapin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapin, E., Adamatzky, A., Collet, P. et al. Stochastic automated search methods in cellular automata: the discovery of tens of thousands of glider guns. Nat Comput 9, 513–543 (2010). https://doi.org/10.1007/s11047-009-9109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-009-9109-0

Keywords

Navigation