Abstract
In this work, the different computational paradigms used in Artificial Intelligence (AI) and Autonomous Robotics are revised in the context of the reactive and situated paradigm. In particular, a Neural Computational paradigm based on perceptual association maps is revised. We explore the Singer hypothesis about the evidence of the same neural mechanism known from retinotopic projections. Finally, the implications of this computational paradigm with maps in the context of the definition, design, building and evaluation of neuroprosthesis are discussed.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arkin RC (1998) Behavior-based robotics. The MIT Press, Cambridge, MA
Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leizpig
Brooks RA (1991) Intelligence without reason. MIT A.I. Memo Nº. 1293
Clancey WJ (1997) Situated cognition. On human knowledge and computer representations. University Press, Cambridge
Clancey WJ (1999) Conceptual coordination. Lawrence Erlbaum, Mahwah, NJ
Craik K (1943) The nature of explanation. Cambridge University Press, Cambridge
Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46:3–9
Dobelle WH, Mladejovsky MG, Evans JR, Roberts TS, Girvin JP (1976) ‘Braille’ reading by a blind volunteer by visual cortex stimulation. Nature 259:111–112
Fernandez E, Alfaro A, Tormos JM, Climent R, Martínez M, Vilanova H, Walsh V, Pascual-Leone A (2002) Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res Protoc 10:115–124
Gibson JJ (1979) The ecological approach to visual perception. Houghton-Mifflin, Boston
Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:7793–7820
Kass JH (1997) Topographic maps are fundamental to sensory processing. Brain Res 44(2):107–112
Kim SJ, Manyam SC, Warren DJ, Normann RA (2006) Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays. Ann Biomed Eng 34(2):300–309
Lettvin JY, Maturana H, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proceedings of the IRE, vol 47, no 11, pp 1940–1951
Löwenstein K, Borchart M (1918) Symptomatologie und elektrische Reizung bei einer Schubverletzung des Histerhauptlappens. Dtsch Z Nervenheilkd 58:264
McCulloch WS (1965) Embodiments of mind. The MIT Press, Cambridge, MA
Mendelson JR, Cynader MS (1985) Sensitivity of cat primary auditory cortex (AI) neurons to the direction and rate of frequency modulation. Brain Res 327:331–335
Merzenich MM, Kaas JH (1980) Principles of organization of sensory-perceptual systems in mammals. In: Sprague JM, Epstein AN (eds) Progress in psychobiology and physiological psychology. Academic Press, San Diego, NY, pp 1–42
Mira J, Delgado AE (1995) Computación neuronal. In: Mira J, Delgado AE, Boticario JG, Díez FJ (eds) Aspectos Básicos de la Inteligencia Artificial. Cap. 11, Sanz y Torres, Madrid, pp 485–575
Mira J, Delgado AE (2002) Computación neuronal: Una Perspectiva dual. In: Barro S, Bugarín AJ (eds) Fronteras de la Computación. Dintel y Díaz de Santos, Santiago de Compostela, pp 265–312
Müller J (1837) Handbuch der Physiologie des Menschen. Verlag von J. Hölscher, Coblenz
Murphy RR (2002) Introduction to AI robotics. MIT Press, Cambridge, MA
Nelson RJ et al (1980) The representations of the body surface in postcentral somatosensory cortex. J Comp Neurol 192:611–643
Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vis Res 39:2577–2587
Ojemann GA (1990) Organization of language cortex derived from investigation during neurosurgery. Semin Neurosci 2:297–305
Penfield W, Rasmussen T (1950) The cerebral cortex of man. The Macmillan Company, New York
Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114
Sams M, Salmening R (1994) Evidence of sharp frequency tuning in human auditory cortex. Hear Res 75:67–74
Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119:507–522
Schreiner CE (1995) Order and disorder in auditory cortical maps. Curr Opin Neurobiol 5:489–496
Singer W (1999) The observer in the brain. In: Riegler A, Peschl M, von Stein A (eds) Understanding representation in the cognitive sciences. Kluwer Academic/Plenum Publishers, New York, pp 253–256
Suga N (1990) Cortical computational maps for auditory imaging. Neural Netw 3:3–21
Troyk P, Bak M, Berg J, Bradley D, Cogan S, Erickson R, Kufta C, McCreery D, Schmidt E, Towle V (2003) A model for intracortical visual prosthesis research. Artif Organs 27:1005–1015
Uchida N et al (2000) Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat Neurosci 3(10):1035–1042
Varela FJ (1979) Principles of biological autonomy. The North Holland Series in General Systems Research, North-Holland, NY
Varela FJ (1995) The re-enchantment of the concrete. In: Steels L, Brooks R (eds) The artificial route to artificial intelligence. Lawrence Erlbaum, Hilldale, pp 11–22
Warren DJ, Fernandez E, Normann RA (2001) High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience 105:19–31
Warren DJ, Koulakov A, Normann RA (2004) Spatiotemporal encoding of a bar’s direction of motion by neural ensembles in cat primary visual cortex. Ann Biomed Eng 32:1265–1275
Acknowledgements
Two the authors (Mira, J and Delgado, A.E.) are grateful for the support from projects TIN2004-07661-C02-01 and TIN2007-07586-C02-01, in whose context this work has been developed. J. M. Ferrandez is supported by F. Séneca 05732/PI/07 and MEC TIN2008-06893-C03-01.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ferrández, J.M., Delgado, A. & Mira, J. Neural computation as adaptive association process in cortical sensorial maps. Nat Comput 8, 739–755 (2009). https://doi.org/10.1007/s11047-009-9128-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11047-009-9128-x