Skip to main content
Log in

Neural computation as adaptive association process in cortical sensorial maps

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In this work, the different computational paradigms used in Artificial Intelligence (AI) and Autonomous Robotics are revised in the context of the reactive and situated paradigm. In particular, a Neural Computational paradigm based on perceptual association maps is revised. We explore the Singer hypothesis about the evidence of the same neural mechanism known from retinotopic projections. Finally, the implications of this computational paradigm with maps in the context of the definition, design, building and evaluation of neuroprosthesis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arkin RC (1998) Behavior-based robotics. The MIT Press, Cambridge, MA

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leizpig

  • Brooks RA (1991) Intelligence without reason. MIT A.I. Memo Nº. 1293

  • Clancey WJ (1997) Situated cognition. On human knowledge and computer representations. University Press, Cambridge

    Google Scholar 

  • Clancey WJ (1999) Conceptual coordination. Lawrence Erlbaum, Mahwah, NJ

    Google Scholar 

  • Craik K (1943) The nature of explanation. Cambridge University Press, Cambridge

    Google Scholar 

  • Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46:3–9

    Article  Google Scholar 

  • Dobelle WH, Mladejovsky MG, Evans JR, Roberts TS, Girvin JP (1976) ‘Braille’ reading by a blind volunteer by visual cortex stimulation. Nature 259:111–112

    Article  Google Scholar 

  • Fernandez E, Alfaro A, Tormos JM, Climent R, Martínez M, Vilanova H, Walsh V, Pascual-Leone A (2002) Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res Protoc 10:115–124

    Article  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton-Mifflin, Boston

    Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:7793–7820

    Google Scholar 

  • Kass JH (1997) Topographic maps are fundamental to sensory processing. Brain Res 44(2):107–112

    Google Scholar 

  • Kim SJ, Manyam SC, Warren DJ, Normann RA (2006) Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays. Ann Biomed Eng 34(2):300–309

    Google Scholar 

  • Lettvin JY, Maturana H, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proceedings of the IRE, vol 47, no 11, pp 1940–1951

  • Löwenstein K, Borchart M (1918) Symptomatologie und elektrische Reizung bei einer Schubverletzung des Histerhauptlappens. Dtsch Z Nervenheilkd 58:264

    Article  Google Scholar 

  • McCulloch WS (1965) Embodiments of mind. The MIT Press, Cambridge, MA

    Google Scholar 

  • Mendelson JR, Cynader MS (1985) Sensitivity of cat primary auditory cortex (AI) neurons to the direction and rate of frequency modulation. Brain Res 327:331–335

    Google Scholar 

  • Merzenich MM, Kaas JH (1980) Principles of organization of sensory-perceptual systems in mammals. In: Sprague JM, Epstein AN (eds) Progress in psychobiology and physiological psychology. Academic Press, San Diego, NY, pp 1–42

  • Mira J, Delgado AE (1995) Computación neuronal. In: Mira J, Delgado AE, Boticario JG, Díez FJ (eds) Aspectos Básicos de la Inteligencia Artificial. Cap. 11, Sanz y Torres, Madrid, pp 485–575

  • Mira J, Delgado AE (2002) Computación neuronal: Una Perspectiva dual. In: Barro S, Bugarín AJ (eds) Fronteras de la Computación. Dintel y Díaz de Santos, Santiago de Compostela, pp 265–312

  • Müller J (1837) Handbuch der Physiologie des Menschen. Verlag von J. Hölscher, Coblenz

    Google Scholar 

  • Murphy RR (2002) Introduction to AI robotics. MIT Press, Cambridge, MA

    Google Scholar 

  • Nelson RJ et al (1980) The representations of the body surface in postcentral somatosensory cortex. J Comp Neurol 192:611–643

    Article  Google Scholar 

  • Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vis Res 39:2577–2587

    Article  Google Scholar 

  • Ojemann GA (1990) Organization of language cortex derived from investigation during neurosurgery. Semin Neurosci 2:297–305

    Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man. The Macmillan Company, New York

    Google Scholar 

  • Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114

    Google Scholar 

  • Sams M, Salmening R (1994) Evidence of sharp frequency tuning in human auditory cortex. Hear Res 75:67–74

    Article  Google Scholar 

  • Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119:507–522

    Article  Google Scholar 

  • Schreiner CE (1995) Order and disorder in auditory cortical maps. Curr Opin Neurobiol 5:489–496

    Article  Google Scholar 

  • Singer W (1999) The observer in the brain. In: Riegler A, Peschl M, von Stein A (eds) Understanding representation in the cognitive sciences. Kluwer Academic/Plenum Publishers, New York, pp 253–256

  • Suga N (1990) Cortical computational maps for auditory imaging. Neural Netw 3:3–21

    Article  Google Scholar 

  • Troyk P, Bak M, Berg J, Bradley D, Cogan S, Erickson R, Kufta C, McCreery D, Schmidt E, Towle V (2003) A model for intracortical visual prosthesis research. Artif Organs 27:1005–1015

    Article  Google Scholar 

  • Uchida N et al (2000) Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat Neurosci 3(10):1035–1042

    Article  Google Scholar 

  • Varela FJ (1979) Principles of biological autonomy. The North Holland Series in General Systems Research, North-Holland, NY

    Google Scholar 

  • Varela FJ (1995) The re-enchantment of the concrete. In: Steels L, Brooks R (eds) The artificial route to artificial intelligence. Lawrence Erlbaum, Hilldale, pp 11–22

    Google Scholar 

  • Warren DJ, Fernandez E, Normann RA (2001) High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience 105:19–31

    Article  Google Scholar 

  • Warren DJ, Koulakov A, Normann RA (2004) Spatiotemporal encoding of a bar’s direction of motion by neural ensembles in cat primary visual cortex. Ann Biomed Eng 32:1265–1275

    Article  Google Scholar 

Download references

Acknowledgements

Two the authors (Mira, J and Delgado, A.E.) are grateful for the support from projects TIN2004-07661-C02-01 and TIN2007-07586-C02-01, in whose context this work has been developed. J. M. Ferrandez is supported by F. Séneca 05732/PI/07 and MEC TIN2008-06893-C03-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Ferrández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrández, J.M., Delgado, A. & Mira, J. Neural computation as adaptive association process in cortical sensorial maps. Nat Comput 8, 739–755 (2009). https://doi.org/10.1007/s11047-009-9128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-009-9128-x

Keywords

Navigation