Skip to main content
Log in

Greedy versus social: resource-competing oscillator network as a model of amoeba-based neurocomputer

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

A single-celled amoeboid organism, the true slime mold Physarum polycephalum, exhibits rich spatiotemporal oscillatory behavior and sophisticated computational capabilities. The authors previously created a biocomputer that incorporates the organism as a computing substrate to search for solutions to combinatorial optimization problems. With the assistance of optical feedback to implement a recurrent neural network model, the organism changes its shape by alternately growing and withdrawing its photosensitive branches so that its body area can be maximized and the risk of being illuminated can be minimized. In this way, the organism succeeded in finding the optimal solution to the four-city traveling salesman problem with a high probability. However, it remains unclear how the organism collects, stores, and compares information on light stimuli using the oscillatory dynamics. To study these points, we formulate an ordinary differential equation model of the amoeba-based neurocomputer, considering the organism as a network of oscillators that compete for a fixed amount of intracellular resource. The model, called the “Resource-Competing Oscillator Network (RCON) model,” reproduces well the organism’s experimentally observed behavior, as it generates a number of spatiotemporal oscillation modes by keeping the total sum of the resource constant. Designing the feedback rule properly, the RCON model comes to face a problem of optimizing the allocation of the resource to its nodes. In the problem-solving process, “greedy” nodes having the highest competitiveness are supposed to take more resource out of other nodes. However, the resource allocation pattern attained by the greedy nodes cannot always achieve a “socially optimal” state in terms of the public cost. We prepare four test problems including a tricky one in which the greedy pattern becomes “socially unfavorable” and investigate how the RCON model copes with these problems. Comparing problem-solving performances of the oscillation modes, we show that there exist some modes often attain socially favorable patterns without being trapped in the greedy one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adamatzky A (2008) Developing proximity graphs by Physarum Polycephalum: does the plasmodium follow Toussaint hierarchy? Parallel Process Lett 19:105–127

    Article  MathSciNet  Google Scholar 

  • Aono M, Gunji Y-P (2003) Beyond input-output computings: error-driven emergence with parallel non-distributed slime mold computer. BioSystems 71:257–287

    Article  Google Scholar 

  • Aono M, Hara M (2007) Amoeba-based nonequilibrium neurocomputer utilizing fluctuations and instability. In: Aki SG et al (eds) UC 2007, LNCS, vol 4618. Springer-Verlag, Berlin, pp 41–54

    Google Scholar 

  • Aono M, Hara M (2008) Spontaneous deadlock breaking on amoeba-based neurocomputer. BioSystems 91:83–93

    Article  Google Scholar 

  • Aono M, Hara M, Aihara K (2007) Amoeba-based neurocomputing with chaotic dynamics. Commun ACM 50(9):69–72

    Article  Google Scholar 

  • Aono M, Hirata Y, Hara M, Aihara K (2009a) Amoeba-based chaotic neurocomputing: combinatorial optimization by coupled biological oscillators. New Gener Comput 27:129–157

    Article  MATH  Google Scholar 

  • Aono M, Hirata Y, Hara M, Aihara K (2009b) Resource-competing oscillator network as a model of amoeba-based neurocomputer. In: Calude C et al (eds) UC 2009, LNCS, vol 5715. Springer-Verlag, Berlin, pp 56–69

    Google Scholar 

  • Aono M, Hara M, Aihara K, Munakata T (2010a) Amoeba-based emergent computing: combinatorial optimization and autonomous meta-problem solving. Int J Unconv Comput 6:89–108

    Google Scholar 

  • Aono M, Hirata Y, Hara M, Aihara K (2010b) A model of amoeba-based neurocomputer. J Comput Chem Japan 9(3):143–156

    Article  Google Scholar 

  • Arbib MA (ed) (2003) The handbook of brain theory and neural networks, 2nd edn. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and co, New York

    MATH  Google Scholar 

  • Golubitsky M, Stewart I (2002) The symmetry perspective. Birkhauser, Basel

  • Hirata Y, Aono M, Hara M, Aihara K (2010) Spontaneous mode switching in coupled oscillators competing for constant amounts of resources. Chaos 20:013117

    Article  Google Scholar 

  • Hopfield JJ, Tank DW (1986) Computing with neural circuits: a model. Science 233:625–633

    Article  Google Scholar 

  • Jones J (2009) Approximating the behaviours of Physarum polycephalum for the construction and minimisation of synthetic transport networks. In: Calude C et al (eds) Unconventional computation 2009, UC 2009, LNCS, vol 5715. Springer-Verlag, Berlin, pp 191–208

    Google Scholar 

  • Kaneko K, Tsuda I (2003) Chaotic itinerancy in focus issue: chaotic itinerancy. Chaos 13:926–936

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler D (1982) Plasmodial structure and motility. In: Aldrich HC, Daniel JW (eds) Cell biology of physarum and didymium, vol 1. Academic Press Inc, New York, pp 145–208

    Google Scholar 

  • Kim S-J, Aono M, Hara M (2010a) Tug-of-war model for two-bandit problem: nonlocally correlated parallel exploration via resource conservation. BioSystems 101:29–36

    Article  Google Scholar 

  • Kim S-J, Aono M, Hara M (2010b) Tug-of-war model for multi-armed Bandit problem. In: Calude C et al (eds) UC 2010, LNCS, vol 6079. Springer-Verlag, Berlin, pp 69–80

    Google Scholar 

  • Kuznetsov YA (2004) Elements of applied bifurcation theory. Springer-Verlag, New York, USA

    MATH  Google Scholar 

  • Nakagaki T, Yamada H, Toth A (2000) Maze-solving by an amoeboid organism. Nature 407:470

    Article  Google Scholar 

  • Nakagaki T, Iima M, Ueda T, Nishiura Y, Saigusa T, Tero A, Kobayashi R, Showalter K (2007) Minimum-risk path finding by an adaptive amoebal network. Phys Rev Lett 99:068104

    Article  Google Scholar 

  • Nisan N, Roughgarden T, Tardos E, Vazirani VV (eds) (2007) Algorithmic game theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Roughgarden T (2005) Selfish routing and the price of anarchy. The MIT Press, Cambridge

    Google Scholar 

  • Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae anticipate periodic events. Phys Rev Lett 100:018101

    Article  Google Scholar 

  • Takamatsu A (2006) Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold. Physica D 223:180–188

    Article  Google Scholar 

  • Takamatsu A, Fujii T, Endo I (2000) Time delay effect in a living coupled oscillator system with the plasmodium of Physarum polycephalum. Phys Rev Lett 85:2026–2029

    Article  Google Scholar 

  • Takamatsu A, Tanaka R, Yamada H, Nakagaki T, Fujii T, Endo I (2001) Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmodial slime mold. Phys Rev Lett 87:078102

    Article  Google Scholar 

  • Tero A, Kobayashi R, Nakagaki T (2006) Physarum solver: a biologically inspired method of road-network navigation. Physica A 363:115–119

    Article  Google Scholar 

  • Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, Fricker MD, Yumiki K, Kobayashi R, Nakagaki T (2010) Rules for biologically inspired adaptive network design. Science 327(5964):439–442

    Article  MathSciNet  Google Scholar 

  • Tsuda S, Zauner KP, Gunji Y-P (2007) Robot control with biological cells. BioSystems 87:215–223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Aono.

Appendices

Appendix

General form of dynamics for star network

In general for any star network consisting of a hub and n terminals, the dynamics Eqs. 2 and 6 of the hub node 0 and the terminal nodes q (≠ 0) can be written separately as follows:

$$ \begin{aligned} \dot{{x}_{0}}= & - \frac{1} {1+n \cdot \lambda} \cdot \sum_{p=1}^{n} (\lambda - \lambda \cdot {W}_{0,p} + {W}_{0,p}) \cdot (\dot{{x}_{p}^{\ast}} -\dot{{x}_{0}^{\ast}}),\\ \dot{{x}_{q}}= & \frac{1} {1+n\cdot \lambda}\cdot \left( {\lambda}^{2}\cdot (n\cdot \dot{{x}_{q}^{\ast}} - \sum_{p=1}^{n} \dot{{x}_{p}^{\ast}}) - \left( (\lambda -1)\cdot (n\cdot \lambda + 1) \cdot {W}_{0,q}- \lambda \right)\cdot (\dot{{x}_{q}^{\ast}}-\dot{{x}_{0}^{\ast}})\right. \\ &\left.+({\lambda}^{2} - \lambda)\cdot \sum_{p=1}^{n} {W}_{0,p}\cdot (\dot{{x}_{p}^{\ast}}-\dot{{x}_{0}^{\ast}}) \right), \end{aligned} $$
(25)
$$ \begin{aligned} \dot{{y}_{0}}= & - \frac{1}{1+n \cdot \lambda}\cdot \left( \sum_{p=1}^{n} (\lambda - \lambda \cdot {W}_{0,p} + {W}_{0,p})\cdot (\dot{{y}_{p}^{\ast}}-\dot{{y}_{0}^{\ast}})\right. \\ &\left.- \frac{(n+1)\cdot \lambda}{(n+2) \cdot L} \cdot \left( \mu \cdot \sum_{p=1}^{n} ({v}_{p}\cdot {s}_{p} - {v}_{0}\cdot {s}_{0}) - \delta \cdot \sum_{p=1}^{n} {W}_{0,p}\cdot ({v}_{p}-{v}_{0}) \right) \right),\\ \dot{{y}_{q}}= & \frac{1}{1+n \cdot \lambda}\cdot \left( {\lambda}^{2} (n\cdot \dot{{y}_{q}^{\ast}} - \sum_{p=1}^{n} \dot{{y}_{p}^{\ast}}) - \left( (\lambda -1)\cdot (n \cdot \lambda + 1)\cdot {W}_{0,q} - \lambda \right)\cdot (\dot{{y}_{q}^{\ast}}-\dot{{y}_{0}^{\ast}})\right. \\ &+ ({\lambda}^{2} - \lambda)\cdot \sum_{p=1}^{n} {W}_{0,p} \cdot (\dot{{y}_{p}^{\ast}}-\dot{{y}_{0}^{\ast}}) \\ & - \frac{\lambda \cdot \mu}{(n+2)\cdot L} \cdot \left( \frac{(n+2)\cdot (n \cdot \lambda +1)}{2}\cdot {s}_{q} \cdot {v}_{q} - (n+1)\cdot {s}_{0}\cdot {v}_{0} - \frac{(n+2) \cdot \lambda -1}{2}\cdot \sum_{p=1}^{n}{s}_{p} \cdot {v}_{p} \right)\\ & + \frac{\lambda\cdot \delta}{2\cdot (n+2) \cdot L}\cdot \left( (n+2)\cdot (n\cdot \lambda+1) \cdot {W}_{0,q} \cdot ({v}_{q} - {v}_{0}) \right.\\ &\left. \left.- ((n+2)\cdot \lambda -1)\cdot \sum_{p=1}^{n} {W}_{0,p}\cdot ({v}_{p}-{v}_{0}) \right) \right). \end{aligned} $$
(26)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aono, M., Hirata, Y., Hara, M. et al. Greedy versus social: resource-competing oscillator network as a model of amoeba-based neurocomputer. Nat Comput 10, 1219–1244 (2011). https://doi.org/10.1007/s11047-010-9224-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-010-9224-y

Keywords

Navigation