Skip to main content
Log in

Consideration of mobile DNA: new forms of artificial genetic regulatory networks

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

This paper extends a recent abstract, tunable model of genomic structural change within the cell lifecycle and explores its use with simulated evolution. A Boolean model of genetic regulatory networks has been presented to include changes in structure based upon the current cell state, e.g., via transposable elements. In this paper the underlying behaviour of the resulting dynamical networks is investigated before their evolvability is explored using single and multi-celled models of fitness landscapes. Structural dynamism is found to be selected for under numerous conditions within the two models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altenberg L (1994) Evolving better representations through selective genome growth. In: Proceedings of the 1st IEEE conference on evolutionary computation. IEEE Press, Los Alamitos, pp 182–187

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  Google Scholar 

  • Bongard J (2002) Evolving modular genetic regulatory networks. In: Proceedings of the IEEE congress on evolutionary computation. IEEE Press, Los Alamitos, pp 1872–1877

  • Buck M, Nehaniv C (2006) Discrete developmental genetic regulatory networks for the evolution of cooperation. In: Kumar S, Hornby GS, Bongard J (eds) Developmental systems: papers from the AAAI fall symposium. AAAI Press, Menlo Park, pp 9–15

  • Bull L (1999) On the evolution of multicellularity and eusociality. Artif Life 5(1):1–15

    Article  Google Scholar 

  • Bull L (2009) On dynamical genetic programming: simple Boolean networks in learning classifier systems. Int J Parallel Emergent Distrib Syst 24(5):421–442

    Article  MathSciNet  MATH  Google Scholar 

  • Bull L (2012a) Evolving Boolean networks with structural dynamism. Artif Life 18(4):385–398

    Article  Google Scholar 

  • Bull L (2012b) Evolving Boolean networks on tunable fitness landscapes. IEEE Trans Evol Comput 16(6):817–828

    Article  Google Scholar 

  • Bull L (2012c) Production system rules as protein complexes from genetic regulatory networks: an initial study. Evol Intell 5(2):59–67

    Article  MathSciNet  Google Scholar 

  • Bull L, Alonso-Sanz R (2008) On coupling random Boolean networks. In: Adamatzky A et al (eds) Automata 2008: theory and applications of cellular automata. Luniver Press, Frome, pp 292–301

  • Bull L, Holland O (1997) Evolutionary computing in multi-agent environments: eusociality. In: Koza JR, Deb K, Dorigo M, Fogel DB, Garzon M, Iba H, Riolo RL (eds) Proceedings of the second annual conference on genetic programming. Morgan Kaufmann, San Francisco, pp 347–352

  • Coufal N, Garcia-Perez J, Peng G, Yeo G, Mu Y, Lovci M, Morell M, O’Shea K, Moran J, Gage F (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131

    Article  Google Scholar 

  • Craig N, Craigie R, Gellert M, Lambowitz AM (2002) Mobile DNA II. American Society for Microbiology Press, Washington, DC

    Google Scholar 

  • Derrida B, Pomeau Y (1986) Random networks of automata: a simple annealed approximation. Europhys Lett 1:45–49

    Article  Google Scholar 

  • Eggenberger P (1997) Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Husbands P, Harvey I (eds) Proceedings of the fourth European artificial life conference. MIT Press, Cambridge, pp 205–213

  • Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2):87–129

    MATH  Google Scholar 

  • Fretter C, Szejka A, Drossel B (2009) Perturbation propagation in random and evolved Boolean networks. N J Phys 11(3):033005

    Google Scholar 

  • Geard N, Wiles J (2005) A gene network model for developing cell lineages. Artif Life 11(3):249–267

    Article  Google Scholar 

  • Gershenson C (2002) Classification of random Boolean networks. In: Standish RK et al (eds) Artificial life VIII. MIT Press, Cambridge, pp 1–8

  • Guo H, Meng Y, Jin Y (2009) A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network. Biosystems 98(3):193–203

    Article  Google Scholar 

  • Hogeweg P (2000) Shapes in the shadow: evolutionary dynamics of morphogenesis. Artif Life 6:85–101

    Article  Google Scholar 

  • Huang W (2008) Evolving gene regulatory networks for virtual creatures. In: Proceedings of the fourth international conference on natural computation. IEEE Press, Los Alamitos, pp 396–400

  • Hung Y-C, Ho M-C, Lih J-S, Jiang I-M (2006) Chaos synchronisation in two stochastically coupled random Boolean networks. Phys Lett A 356:35–43

    Article  MATH  Google Scholar 

  • Ilachinski A, Harpern P (1987) Structurally dynamic cellular automata. Complex Syst 1:503–527

    Google Scholar 

  • Kano H, Godoy I, Courtney C, Vetter M, Gerton G, Ostertag E, Kazazian H (2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev 23(11):1303–1312

    Article  Google Scholar 

  • Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  MathSciNet  Google Scholar 

  • Kauffman SA (1993) The origins of order. Oxford University Press, Oxford

    Google Scholar 

  • Kauffman SA, Levin S (1987) Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol 128:11–45

    Article  MathSciNet  Google Scholar 

  • Kauffman SA, Johnsen S (1991) Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. In: Langton C, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison-Wesley, pp 325–370

  • Kazazian H (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  Google Scholar 

  • Lemke N, Mombach J, Bodmann B (2001) A numerical investigation of adaptation in populations of random Boolean networks. Physica A 301:589–600

    Article  MATH  Google Scholar 

  • McClintock B (1987) Discovery and characterization of transposable elements: the collected papers of Barbara McClintock. Garland, New York

    Google Scholar 

  • Morelli LG, Zanette DH (2001) Synchronisation of Kauffman networks. Phys Rev E 63:036204

    Article  Google Scholar 

  • Shapiro J (1992) Natural genetic engineering in evolution. Genetica 86:99–111

    Article  Google Scholar 

  • Shapiro J (2011) Evolution: a view from the 21st century. FT Press, Upper Saddle River

    Google Scholar 

  • Simões A, Costa E (1999) Transposition versus crossover: an empirical study. In: Banzhaf W et al (eds) Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, Orlando, pp 612–619

  • Sipper M, Ruppin E (1997) Co-evolving architectures for cellular machines. Physica D 99:428–441

    Article  MATH  Google Scholar 

  • Smith J, Smith RE (1999) An examination of tuneable random search landscapes. In: Banzhaf W, Reeves C (eds) Foundations of genetic algorithms V. Morgan Kauffman, San Francisco, pp 165–182

  • Tan P, Tay J (2006) Evolving Boolean networks to find intervention points in dengue pathogenesis. In: Keijzer M et al (eds) Proceedings of the genetic and evolutionary computation conference. ACM Press, Boston, pp 307–308

  • Taylor T (2004) A genetic regulatory network-inspired real-time controller for a group of underwater robots. In: Proceedings of intelligent autonomous Systems 8. IOS Press, Amsterdam, pp 403–412

  • Thangavelautham J, D’Eleuterio G (2005) A coarse-coding framework for a gene-regulatory-based artificial neural tissue. In: Capcarrere M et al (eds) Proceedings of the eighth European conference on artificial life. Springer, Berlin, pp 67–77

  • Van den Broeck C, Kawai R (1990) Learning in feedforward Boolean networks. Phys Rev A 42:6210–6218

    Article  Google Scholar 

  • Villani M, Serra R, Ingrami P, Kauffman SA (2006) Coupled random Boolean networks forming an artificial tissue. In: Proceedings of the seventh international conference on cellular automata for research and industry. Springer, Amsterdam, pp 548–556

  • Wang H, Xing J, Grover D, Hedges D, Han K, Walker J, Batzer M (2005) SVA elements: a hominid-specific retrotransposon family. J Mol Biol 354:994–1007

    Article  Google Scholar 

  • Welch J, Waxman D (2005) The NK model and population genetics. J Theor Biol 234:329–340

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Bull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bull, L. Consideration of mobile DNA: new forms of artificial genetic regulatory networks. Nat Comput 12, 443–452 (2013). https://doi.org/10.1007/s11047-013-9369-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-013-9369-6

Keywords

Navigation