Skip to main content

Advertisement

Log in

An adaptive genetic algorithm for parameter estimation of biological oscillator models to achieve target quantitative system response

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Mathematical modeling has become an integral part of synthesizing gene regulatory networks. One of the common problems is the determination of parameters, which are a part of the model description. In the present work, we propose a customized genetic algorithm as a method to determine the parameters such that the underlying oscillatory system exhibits the target behavior. We propose a problem specific, adaptive fitness function evaluation and a method to quantify the effect of a single parameter on the system response. The properties of the algorithm are highlighted and confirmed on two test cases of synthetic biological oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alon U (2007) An introduction to systems biology: design principles of biological circuits. Chapman & Hall/CRC, New York

    Google Scholar 

  • Back T (1992) Self-adaptation in genetic algorithms. In: Towards a practice of autonomous systems proceedings of the first European conference on artificial life. MIT Press, Cambridge, pp 263–271

  • Butz M, Neuenschwander M, Kast P, Hilvert D (2011) An N-terminal protein degradation tag enables robust selection of highly active enzymes. Biochem Cell Biol 50(40):8594–8602

    Article  Google Scholar 

  • Chambers LD (2000) The practical handbook of genetic algorithms: applicationsations. Chapman and Hall/CRC, Perth

    Book  MATH  Google Scholar 

  • Dill KA, Fiebig KM, Chan HS (1993) Cooperativity in protein-folding kinetics. Proc Natl Acad Sci USA 90(5):1942–1946

    Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nat Biotechnol 403(6767):335–338

    Article  Google Scholar 

  • Fang F, Ni BJ, Yu HQ (2009) Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm. Water Res 43(10):2595–2604

    Article  Google Scholar 

  • Farmani R, Wright J (2003) Self-adaptive fitness formulation for constrained optimization. IEEE Trans Evol Comput 7(5):445–455

    Article  Google Scholar 

  • François P, Hakim V (2004) Design of genetic networks with specified functions by evolution in silico. Proc Natl Acad Sci USA 101(2):580–585

    Google Scholar 

  • Hajimorad M, Gray PR, Keasling JD (2011) A framework and model system to investigate linear system behavior in Escherichia coli. J Biol Eng 5(1):3

    Article  Google Scholar 

  • Law N, Szeto K (2007) Adaptive genetic algorithm with mutation and crossover matrices. In: Proceedings of the 20th international joint conference on artificial intelligence, Hyderabad, India, pp 2330–2333

  • Lillacci G, Khammash M (2010) Parameter estimation and model selection in computational biology. PLoS Comput Biol 6(3):696

    Article  MathSciNet  Google Scholar 

  • Lillacci G, Khammash M (2012) A distribution matching method for parameter estimation and model selection in computational biology. Int J Robust Nonlinear Control 22:1065–1081

    Google Scholar 

  • Mackey M, Glass L (1977) Oscillation and chaos in physiological control systems. Sci Agric 197(4300):287–289

    Article  Google Scholar 

  • Morton AJ, Wood NI, Hastings MH, Hurelbrink C, Barker Ra, Maywood ES (2005) Disintegration of the sleep-wake cycle and circadian timing in Huntington’s disease. J Neurosci 25(1):157–163

    Article  Google Scholar 

  • Novák B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9(12):981–991

    Article  Google Scholar 

  • Paladugu S, Chickarmane V (2006) In silico evolution of functional modules in biochemical networks. Syst Biol 153(4):223–236

    Article  Google Scholar 

  • Rhodius VA, Mutalik VK, Gross CA (2012) Predicting the strength of UP-elements and full-length E. coli σE promoters. Nucl Acids Res 40(7):2907–2924

    Article  Google Scholar 

  • Rodrigo G, Jaramillo A (2012) AutoBioCAD: full biodesign automation of genetic circuits. ACS Synth Biol. doi:10.1021/sb300084h

  • Rodrigo G, Carrera J, Jaramillo A (2007) Genetdes: automatic design of transcriptional networks. Bioinformatics (Oxford, England) 23(14):1857–1858

    Article  Google Scholar 

  • Roy SW (2009) Probing evolutionary repeatability: neutral and double changes and the predictability of evolutionary adaptation. PloS One 4(2):e4500

    Article  Google Scholar 

  • Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnol 27(10):946–950

    Article  Google Scholar 

  • Scheper T, Klinkenberg D, Pennartz C, van Pelt J (1999) A mathematical model for the intracellular circadian rhythm generator. J Neurosci 19(1):40–47

    Google Scholar 

  • Smith J, Fogarty T (1996) Self adaptation of mutation rates in a steady state genetic algorithm. In: Proceedings of IEEE international conference on evolutionary computation, pp 318–323

  • Szendro IG, Franke J, de Visser JAGM, Krug J (2013) Predictability of evolution depends nonmonotonically on population size. Proc Natl Acad Sci USA 110(2):571–576

    Google Scholar 

  • Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M (2009) A tunable synthetic mammalian oscillator. Nature 457(7227):309–312. doi:10.1038/nature07616, URL http://www.ncbi.nlm.nih.gov/pubmed/19148099

  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science (New York, NY) 308(5724):1043–1045

    Article  Google Scholar 

  • Vecchi MP, Kirkpatrick S, Gelatt CD (1987) Optimization by simulated annealing, vol 220. Sci N Ser 220(4598):671–680

  • Weinreich DM, Chao L (2005) Rapid evolutionary escape by large populations from local fitness peaks is likely in nature. Evolution 59(6):1175–1182

    Google Scholar 

  • Wu YH, Fischer DF, Kalsbeek A, Garidou-Boof ML, van der Vliet J, van Heijningen C, Liu RY, Zhou JN, Swaab DF (2006) Pineal clock gene oscillation is disturbed in Alzheimer’s disease, due to functional disconnection from the ”master clock”. FASEB J 20(11):1874–1876

    Article  Google Scholar 

  • Yokobayashi Y, Weiss R, Arnold FH (2002) Directed evolution of a genetic circuit. Proc Natl Acad Sci USA 99(26):16587–16591

    Google Scholar 

Download references

Acknowledgements

The research was supported by the scientific research programme Pervasive Computing (P2-0359) financed by Slovenian Research Agency in years from 2009 to 2012. Results presented here are in scope of Ph.D. thesis that is being prepared by Martin Stražar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stražar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stražar, M., Mraz, M., Zimic, N. et al. An adaptive genetic algorithm for parameter estimation of biological oscillator models to achieve target quantitative system response. Nat Comput 13, 119–127 (2014). https://doi.org/10.1007/s11047-013-9383-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-013-9383-8

Keywords

Navigation