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Abstract. Unlike their traditional, silicon counterparts, DNA computers have
natural interfaces with both chemical and biological systems. These can be used
for a number of applications, including the precise arrangement of matter at the
nanoscale and the creation of smart biosensors. Like silicon circuits, DNA strand
displacement systems (DSD) can evaluate non-trivial functions. However, these
systems can be slow and are susceptible to errors. It has been suggested that
localised hybridization reactions could overcome some of these challenges. Lo-
calised reactions occur in DNA ‘walker’ systems which were recently shown to
be capable of navigating a programmable track tethered to an origami tile. We
investigate the computational potential of these systems for evaluating Boolean
functions. DNA walkers, like DSDs, are also susceptible to errors. We develop a
discrete stochastic model of DNA walker ‘circuits’ based on experimental data,
and demonstrate the merit of using probabilistic model checking techniques to
analyse their reliability, performance and correctness.

1 Introduction

The development of simple biomolecular computers is attractive for engineering and
health applications that require in vitro or in vivo information processing capabilities.
DNA computing models which use hybridization and strand displacement reactions to
perform computation have been particularly successful. DNA strand displacement sys-
tems (DSD) have been shown experimentally to simulate logic circuits [13, 12] and
are known to be Turing-universal [11]. However, computing with biomolecules cre-
ates many challenges. For example, reactions within a DSD are global in the following
sense: strands which are intended to react must first encounter one another in a mixed
solution. The mixing of all reactants may lead to unintended reactions between strands.
These systems do not, at present, ensure the spatial locality typical of other computing
models. Qian and Winfree suggested that tethering DNA based circuits to an origami tile
could overcome some of these challenges [12]. This idea was explored and expanded
upon by Chandran et al. [5], who investigate how such systems could be realised exper-
imentally, give constructions of composable circuits, and propose a biophysical model
for verification of tethered, hybridization-based circuits. Our work is largely inspired



Fig. 1. (1) The walker strand carries a load (Q) that will quench fluorophores (F) when nearby.
The walker is attached to the initial anchorage and all other anchorages are blocked. By adding
unblocking strands, the selected track becomes unblocked. In this case the signal that opens up
the path labelled by ¬X is added. (2) The nicking enzyme (E) attaches to the walker-anchorage
complex, and cuts the anchorage. The anchorage top melts away from the walker, exposing 6
nucleotides as a toehold. (3) The exposed toehold becomes attached to the next anchorage. (4)
In a displacement reaction, the walker becomes completely attached to the new anchorage. The
stepping is energetically favourable, because it re-forms the base pairs that were lost after the pre-
vious anchorage was cut. (5) Repeating this process, the walker arrives at a junction. The walker
continues down the unblocked track, eventually reaching the final anchorage and quenching the
fluorophore.

by theirs, but we consider another setting which also exhibits localised reactions: DNA
walker systems [2, 7, 10, 14–16].

Various DNA walkers have been experimentally realised — see [14] and references
therein. Single-legged DNA walkers were recently shown capable of navigating a pro-
grammable track of strands, called anchorages, that are tethered to a DNA origami
tile [14]. Movement of the walker between anchorages is shown in Fig. 1. Initially, all
tracks are blocked by hybridization to blocker strands. Anchorages and their blockers
are addressed by means of distinct toehold sequences (shown coloured): anchorages
are selectively unblocked by adding strands complementary to their blockers as input.
Much like field programmable gate arrays, these systems are easily reconfigured. By
using programmable anchorages at track junctions, Wickham et al. [14] demonstrate
that a walker can be directed to any leaf in a complete two-level binary tree using input
strands that unblock the intended path.

In Section 2, the computational expressiveness of such walker systems is explored,
using a theoretical framework that assumes ideal conditions. We highlight significant
limitations of current walker systems and motivate future work. In Section 3 we develop
a probabilistic model to analyse the impact of different sources of error that arise in
experiments on reliability, performance and correctness of the computation. The model
can be used to support the design and verification of DNA walker circuits.



2 Computational potential of DNA walker circuits

In this section we explore the computational potential of DNA walker systems. We fo-
cus on deterministic Boolean function evaluation and call the resulting constructions
DNA walker circuits. We begin by defining a model of computation that makes explicit
the underlying assumptions that characterize the DNA walker systems considered here.
These assumptions are consistent with current published experimental systems: in par-
ticular, we do not explore the potential for multiple walkers to interact within the same
circuit. However, we do consider the potential consequences for parallel computation.

2.1 A model of computation for DNA walker circuits

A DNA walker circuit is composed of straight, undirected, tracks (consecutive anchor-
ages), and gates (track junction points) that connect at most three tracks. A gate can
have at most one Boolean guard for each track that it connects. A particular guard
is implemented using one or more blocking strands that share a common toehold se-
quence; distinct guards use distinct toehold sequences. A track adjacent to a gate is
blocked if it has a guard that evaluates to false — its unblocking strands are not added
to solution — and is unblocked otherwise. For example, Fig. 1 depicts a circuit of a
single gate connecting three tracks. The track ending with the anchorage marked with
the red fluorophore (top right of panel 1) has the Boolean guard X , while the track
ending with the anchorage marked with the green fluorophore has the Boolean guard
¬X . Panel 2 of Fig. 1 shows that the path to the green fluorophore is unblocked when
¬X evaluates to true (i.e., the unblocking strands for ¬X are added to solution). In this
case, X evaluates to false and the path to the red fluorophore remains blocked (i.e., the
unblocking strands for X are not added to solution). We define a fork gate as having
at most one input track, and exactly two guarded output tracks. Each circuit has one
source – a fork gate with no input track denoting the initial position of a walker. A join
gate with an output track has at most two guarded input tracks. A join gate with no
output track is a sink and has at most three (unguarded) input tracks. Each circuit has
one or more true sinks and one or more false sinks.

In a circuit C with Boolean guards over n variables, a variable assignment A for
C is a truth assignment of those n variables. Consider any DNA walker circuit C and
variable assignment A for C. Let C[A] denote the set of reachable paths originating
from the source of C, after all guards are evaluated as blocked or unblocked, under
assignment A. We say that C is deterministic under assignment A if there is exactly
one path from the source to a sink in C[A]. Note that this definition of determinism
precludes the possibility of a deadlock, (i.e., when no path from the source can reach
a sink). Let VALUE (C[A]) be the output value of the circuit under assignment A (i.e.,
whether the reachable sink is a true sink or a false sink). Circuit C is deterministic if it
is deterministic under all possible variable assignments.

A circuit set S, consisting of one or more unconnected circuits, is deterministic if
and only if VALUE (Ci[A]) = VALUE (Cj [A]), for each Ci, Cj ∈ S, under any possible
assignment A. Let VALUE (S[A]) be the value of S under assignment A. The size of
S, denoted by SIZE (S), is the total count of component gates.3 We define the worst

3 We do not investigate circuit area in this paper.



case time of a computation in S, denoted by TIME (S), as the longest reachable path
from a source to a sink. This notion of time captures the ability of multiple walkers to
simultaneously traverse disjoint paths (one per unconnected circuit).

Let S[A] denote the set of reachable paths in S under assignment A (one per uncon-
nected circuit). Given a circuit Ci ∈ S, we say that a gate G ∈ Ci is reachable in Ci[A]
(equivalently S[A]) if there exists an unblocked path from the source of Ci to G. Note
that, if every gate is reachable, this implies that every output track of a gate can be tra-
versed under some variable assignment. We call gates where this is not true redundant.
We will reason about circuit sets where all gates are reachable and non-redundant under
some variable assignment. When this is not the case, the circuit set can be simplified to
one that is logically equivalent.

2.2 Reporting output in DNA walker circuits
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Fig. 2. Reporting Boolean decisions with DNA walker circuits. (Left) A quenching walker with
red fluorophores labelling false sinks and green fluorophores labelling true sinks. A drop in signal
for one colour indicates the truth value of the circuit. However, the signal drop is inversely propor-
tional to the number of sinks of the same colour. (Center) A green coloured walker and quenching
true sinks. When the circuit evaluates to true the green signal is fully suppressed. However, the
fluorescence output from this circuit cannot distinguish between an incomplete computation and
a false one. (Right) Two parallel copies of the circuit, with different fluorophores labelling the
walkers and with quenching true sinks in one and quenching false sinks in the other: the compu-
tation is complete and unambiguously reported when one colour is suppressed.

Output of a DNA walker circuit can be reported with the use of different coloured
(spectrally resolvable) fluorophores and also quenchers. If a walker carries a quencher
cargo, then it has the potential to decrease one of a number of different fluorescent
signals from fluorophores positioned at the circuit sinks. This scenario is illustrated in
Fig. 2 (Left). In a circuit that decides a Boolean function, a single, quenching, walker
can only decrease the signal of a particular colour (corresponding to a particular flu-
orophore) by an amount that is inversely proportional to the number of sinks labelled
with that same colour. Accurate output reporting could be problematic in larger circuits



with many sinks. We will therefore focus only on reporting strategies that fully sup-
press a particular colour. Rather than carrying a quencher, a walker instead carries a
fluorophore of a single colour and either all true sinks or all false sinks are labelled with
quenchers. An example with quenching true sinks is shown in Fig. 2 (Center). This cir-
cuit can fully suppress the fluorophore signal when it evaluates to true, regardless of its
size. However, this is a one-sided reporting strategy as one cannot distinguish between
the case of an incomplete computation or one evaluating to false. As illustrated in Fig. 2
(Right) this shortcoming can be addressed by using two circuits in parallel with each
using a one-sided reporting strategy. Each of the two (otherwise identical) circuits uses
a different coloured walker: one has quenching false sinks and the other quenching true
sinks. In this circuit set, one colour will be fully suppressed when it is true, the other
when it is false, and neither will be suppressed until the computation completes.

2.3 Deterministic fork and join gates in DNA walker circuits
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Fig. 3. (a) A connectivity graph of a DNA walker circuit to evaluate the disjunction (X ∨Y ∨Z).
There are two output tracks: one when the circuit evaluates to true, the other when it evaluates to
false. The resulting path when X = Y = f and Z = t is shown highlighted. (b) Two conjunction
circuits are composed into the disjunction (A∧¬B∧C)∨(¬X∧Y ∧Z). Two source nodes (two
walkers) are used to evaluate clauses in parallel. No assignment of guards to the join gate labelled
J can ensure that this circuit is deterministic. This is evident when A = C = Y = Z = t and
B = X = f .

If all gates in a circuit set S are deterministic, it follows that S is deterministic. The
following theorem shows that deterministic fork gates must have output guards that are
negations of each other.

Theorem 1. A fork gate in a DNA walker circuit is deterministic if and only if there
exists some guard G such that the left output track is guarded by G and the right is
guarded by ¬G.



Proof. If neither output track is guarded, then any path that can reach the gate could be
extended via the left or the right output track and the gate would not be deterministic.
Similarly, this is true when only one output track is guarded and the guard evaluates
to false. (If the fork gate is only reachable when the single output guard evaluates to
true, then the gate is redundant as the output track with the guard is never used.) Thus,
consider when each output track is guarded and let the left output have guardGL and the
right have guard GR. Note that GL 6≡ GR as otherwise any path that reaches the gate
will result either in a deadlock — when both evaluate to false — or the path could be
extended via the left or the right output tracks — when both evaluate to true. Consider
any path p that can reach the gate and the case when GL evaluates to true and GR to
false. It follows that, before reaching the gate, p must not traverse a track guarded by
¬GL nor by GR. Since the gate is non-redundant, p must also be able to reach the gate
when GL evaluates to false and GR to true. It follows that, before reaching the gate, p
must not traverse a track guarded by GL nor by ¬GR. Therefore, path p is independent
of the variables affecting guards GL and GR. Thus, there exists a variable assignment
such that any path reaching the gate will result in a deadlock, or can be extended via
both output tracks, unless GL ≡ ¬GR. ut

Given any Boolean function f : {0, 1}n → {0, 1}, there exists a deterministic
DNA walker circuit set S that can evaluate f , under any assignment to its n variables,
such that TIME (S) = O(n). One construction is to simply form a canonical binary
decision tree over some fixed order of the n variables. However, in such a construc-
tion SIZE (S) = Θ(2n). It is natural to consider more space efficient representations
to evaluate f , such as binary decision diagrams (BDDs) [4]. In particular, reduced or-
dered BDDs are capable of representing some Boolean functions in a compressed form
that can be exponentially smaller than its canonical binary decision tree representation.
Like walker circuits, BDDs have a unique source. Unlike general BDDs, DNA walker
circuits are necessarily planar. Either we are limited to considering planar BDD rep-
resentations or additional fork and join nodes must be added to a BDD representation
when realising it as a walker circuit. A significant difference, however, is that BDDs
form directed acyclic graphs while tracks in a DNA walker circuit are undirected. Con-
sider the case when a walker reaches a join gate via its left input track. Unless the right
input track is blocked, the walker is equally likely to continue on the right input track as
it is on the output track. Additional steps are necessary to compensate for the undirected
nature of tracks in walker circuits.

Unlike fork gates, it is not obvious whether all join gates can be made deterministic.
Theorem 2 characterizes both the necessary and sufficient conditions: a deterministic
join of two disjoint sets of paths, one for each input track, is only possible if they
were previously “forked”4 on some variable X (i.e., in one set all paths traverse an
edge guarded by X and in the other set all traverse an edge guarded by ¬X). This
property is exemplified by the contrast between the disjunction circuit of Fig. 3(a) and
the disjunction of two conjunctions circuit as shown in Fig. 3(b). In the latter, two
walkers are used in an attempt to parallelize the evaluation. However, as the clauses do
not have literals over a common variable, there are no guards that can be assigned to

4 It is not a necessary condition that the two disjoint sets of paths reaching the join were forked
by a common gate, only that they can be partitioned based on the value of some variable.



the join gate labeled J to ensure the circuit is deterministic. Note that this limitation
is not caused by the restricted topology of walker circuits (i.e., their layout on a planar
surface), but rather by the property that their tracks are undirected.

Theorem 2. A join gate in a DNA walker circuit is deterministic if and only if there
exists some guard G such that the left input track is guarded by G, the right by ¬G and,
prior to reaching those guards, all paths that can reach the left input must traverse a
track guarded byG and all paths that can reach the right must traverse a track guarded
by ¬G.

Proof. (⇒ if) Suppose the left input track is guarded by G, the right by ¬G and, prior
to reaching those guards, all paths that can reach the left input must traverse a track
guarded by G and all paths that can reach the right must traverse a track guarded by
¬G. There are two cases to consider. Suppose G evaluates to true. Then, no path can
reach the right input since, by the assumption, those paths must traverse a track guarded
by ¬G prior to reaching the gate. It follows that all paths that can reach the gate when
G evaluates to true must be to the left input. Furthermore, as the right input is guarded
by ¬G, those paths can only be extended via the output of the gate. The other case (G
evaluates to false) is symmetric. Furthermore, as the guards are negations of each other,
they cannot simultaneously evaluate to false and cause a potential deadlock.

(⇐ only if) Let GL and GR be the guards of the left and right inputs, respectively.
(If one or more of the input tracks is unguarded, then the gate cannot be deterministic
when both are reachable by at least one path.) First, consider all paths that can reach
the left input, guarded by GL. It must simultaneously be true that none of those paths
(i) traverse a track guarded by ¬GL and (ii) all of those paths traverse a track guarded
by ¬GR. If condition (i) is not satisfied, then there would exist a path that traverses a
track guarded by ¬GL and, to extend past the join gate, must traverse another guarded
by GL. As this is not possible, the path would end in a deadlock and the gate would not
be deterministic. If condition (ii) is not satisfied then there would exist some path p that
does not traverse a track guarded by ¬GR, but may possibly traverse a track guarded
by GR. In this case, there exists a variable assignment where GR, and all other guards
on path p, evaluate to true. With such a variable assignment, path p could be extended
via the output track or the right input track. Thus, condition (ii) must also be satisfied,
as otherwise the gate would not be deterministic. The conditions (and the argument that
both are necessary) when considering all paths that can initially reach the right input,
guarded by GR, are symmetric.

The sufficiency argument (⇒ if ) shows the gate is deterministic when GL ≡ ¬GR.
It remains to show it is not deterministic otherwise. First, consider the consequence
when both GL and GR evaluate to true. By condition (ii) all paths leading to the left
(right) input traverse a track guarded by ¬GR (¬GL). In this case, no paths can reach
the gate. Recall that the gate is non-trivial and therefore each input is reachable by at
least one path. Thus, consider when both GL and GR evaluate to false. The conditions
permit that paths can reach the gate; however, if any path does it will deadlock as both
inputs to the gate are blocked. Thus, for all paths that can reach the gate, it will be
deterministic only when GL ≡ ¬GR. ut



2.4 Evaluating Boolean formulas with DNA walker circuits

Despite the shortcomings of join gates in current DNA walker circuits, it is not the case
that Boolean formulas must be evaluated using a circuit forming a binary decision tree.
Any Boolean formula can be represented in one of its canonical forms. We will focus
on conjunctive normal form (CNF) which is a single conjunction of clauses, where each
clause is a disjunction over literals. A formula in CNF is said to be k-CNF if the largest
clause has size k. Using a standard transformation, a Boolean formula in k-CNF with
at most l total literals can be converted to a 3-CNF formula over O(l) variables, with at
most O(l) clauses (each having at most 3 literals). As such, we will reason exclusively
about circuits to evaluate 3-CNF formulas.

Constructing a walker circuit to represent a formula in 3-CNF with m clauses is
straightforward. Each clause can be represented by the disjunction circuit of Fig. 3(a).
The source of the circuit will be the first fork gate of the first clause. The output track
signalling the i-th clause is satisfied is connected to the input track of clause i + 1.
Thus, the walker will only reach the single true sink of the circuit (output from clause
m) if the formula is satisfied for that particular variable assignment. To ensure that both
true and false signals can be reported deterministically, we use the reporting strategy
depicted in Fig. 2 (Right) which employs two parallel copies of the circuit, each using
different coloured walkers and different quenching sinks.

Theorem 3. Let F be any 3-CNF Boolean formula withm clauses. There exists a DNA
walker circuit set S, with SIZE(S) = Θ(m) and TIME(S) = O(m), such that given any
variable assignment A for F , VALUE (S[A]) is the truth value of F under assignment
A.

Proof. The construction is described in Section 2.4 and it is easy to see that the circuit
is deterministic and that it correctly reports the truth value of F under assignment A.
What remains is to bound the circuit size and worst case time. The construction uses a
set of two circuits: CT and CF . Consider the circuit CT used to evaluate ifF is true under
assignmentA. There arem clauses and each is simulated by a disjunction circuit of size
O(1). These circuits are composed in series to form CT . Therefore, SIZE(CT ) = Θ(m)
and TIME(CT ) = O(m). The arguments are the same for circuit CF and, as both are
evaluated in parallel, the claim follows. ut

While the construction of Theorem 3 can represent any Boolean formula, and some
in exponentially less space than a binary decision tree, the resulting circuit set is formula
specific. Given the effort of creating DNA walker circuits, a more uniform circuit — one
capable of evaluating many Boolean functions — is worth exploring. As with silicon
circuits, we can construct a uniform circuit to evaluate any 3-CNF formula, under any
variable assignment, up to some bound on the number of variables. Each variable can be
present in a clause as either a positive or negative literal, but not both. (The circuit can
be modified to handle this case if necessary.) Therefore, there are at most 23

(
n
3

)
unique

clauses in any 3-CNF Boolean formula over n variables, and also for any formula over
m ≤ n variables. In this general circuit, we supplement each possible clause with an
initial fork gate guarded on the condition of the clause being active or inactive in the
particular formula being evaluated. If it is inactive, the walker can pass through to the



output track denoting true, without traversing guards for the literals of the clause. Note
that this only increases the size of each clause by a constant.

Corollary 1. There exists a DNA walker circuit set S, with SIZE(S) = O(n3) and
TIME(S) = O(n3), that can evaluate any 3-CNF Boolean formula over m ≤ n vari-
ables under any variable assignment.

A 3-CNF formula with m clauses can be evaluated in polylogarithmic time (in
m) using a silicon circuit in a straightforward manner: each clause can be evaluated
in parallel and those results can be combined using a binary reduction tree of height
O(logm)—only if all clauses are satisfied will the root of the reduction tree output
true. Is the same possible in DNA walker circuits? Unfortunately, this is not the case
in general. Such a circuit would require a new kind of join gate, outside of our cur-
rent model of computation, to perform a conjunction of multiple walkers — one walker
leaves the gate only after all input walkers have arrived. Parallel evaluation of circuits
representing formulas in disjunctive normal form (DNF) does not fair better. Consider
the case of a DNF formula with m clauses where clause m − 1 and clause m have no
literals over a common variable. By Theorem 2, a join gate connecting the circuits for
these clauses cannot be deterministic. An example of this situation is given in Fig. 3(b).

3 Design and verification of DNA walker circuits

We have so far assumed DNA walker circuits to work perfectly. In a real experiment
various errors can occur, for example, the walker may release from the track, or a block-
ade can fail to block an anchorage. In this section, we analyse the reliability and per-
formance of DNA walker circuits using probabilistic model checking. We develop a
continuous-time Markov chain model, based on a variety of DNA walker experiments
from [2, 14, 15], and analyse it against quantitative properties such as the probability
of the computation terminating or expected number of steps taken until termination.
We use the PRISM model checker [8], which accepts models described in a scripted
language and properties in the form of temporal logic. For example, if we label all
states of the model where a walker quenches any fluorophore by “finished”, then the
query P=?[F [T,T ] finished ] yields the probability of all paths that eventually reach a
state where a walker has quenched a fluorophore (in other words, the computation ter-
minated) by time T . A custom tool was developed to generate PRISM model scripts
with matching track-layout graphs. Different configurations of tracks are studied: linear
tracks are considered in Fig. 4 (Top), while branched tracks are used in Fig. 5 and Fig. 6.
We use the results of experiments on linear (Fig. 4) and single-branched tracks to estab-
lish model parameters, and match model predictions with observations on double-layer
tracks to evaluate the quality of our model.

Experiments show that the walker can step onto anchorages that are fixed as far
away as 19 nm. We assume non-zero rates for the walker to step onto any intact anchor-
age within 24 nm distance. This range was chosen by taking into account the lengths of
the empty anchorage and walker-anchorage complex, estimated around 15 nm and 11
nm respectively.



Fig. 4. Top: A small linear track of 8 anchorages with fluorophores on both the second and last
anchorage. Experiments were performed with one or more anchorages omitted [15]. Right: Ex-
perimental results (reproduced with permission from the authors). The walker hardly reaches the
final anchorage when anchorage 7 is removed, due to the double penalty of a longer final step and
the mismatch in the final anchorage. Left: Model results. Dotted lines: Alternative model where
the walker can step onto already-cut anchorages with rate kb = k/30.

A step taken by the walker corresponds to a single transition in the Markov chain,
although the real stepping process is more complex, as depicted in Fig. 1. Assume that
the stepping rate k depends on distance d between anchorages and some base stepping
rate ks. Denote by da = 6.2 nm the average distance between anchorages in the ex-
periment shown in Fig. 4. Denote by dM = 24 nm the maximal interaction distance
discussed earlier. Based on previous experimental estimates of [15], we fix the stepping
rate k as:

k =


ks = 0.009s−1 when d ≤ 1.5da

ks/50 when 1.5da < d ≤ 2.5da

ks/100 when 2.5da < d ≤ dM

0 otherwise

(1)

These rates define a sphere of reach around the walker-anchorage complex, allowing
the walker to step onto an uncut anchorage when it is nearby. In Fig. 5 the sphere of
reach is depicted to scale with walker circuits. There are two exceptions. Stepping from
the initial anchorage and stepping onto the final anchorage occur at lower rates. The



domain complementary to the walker on the initial anchorage is two bases longer than
the corresponding domain of a regular anchorage. Stepping from the initial anchorage
was reported to happen 3× more slowly: this is incorporated in the model. The final
anchorage includes a mismatched base that prevents cutting by the nicking enzyme.
Based on the experimental data, we fit a tenfold reduction for the rate of stepping onto
the final absorbing anchorage (Fig. 4).

Three types of interaction that are known to occur are omitted from the model: all
three could be incorporated in future. Firstly, a rate of ks/5000 is reported [15] for
transfer of the walker between separate tracks built on different DNA origami tiles.
Transfer between tracks could be eliminated by binding the tiles to a surface, thus keep-
ing them apart. Secondly, the walker can move between intact anchorages in the ab-
sence of the nicking enzyme with a rate of ∼ ks/13 [15]. With the enzyme present,
the walker spends little time attached to an intact anchorage, as enzymatic activity is
relatively fast.5 Therefore we remove the rate altogether. In our model, the anchorage
is cut as soon as the walker attaches to it. Thirdly, the walker can step backward onto
cut anchorages. This requires a blunt-end strand-displacement reaction which is known
to be slow relative to toehold-mediated displacement [17]. A variant of the model with
a backward rate kb = k/30 is shown in dotted lines in Fig. 4 (Left). In this case the
model predicts significant quenching of fluorophore F2 at late times by walkers whose
forward motion is obstructed by omission of one or more anchorages: this does not
match experimental data. A reduced rate kb = k/500 (not plotted) has a similar effect.

The time-dependent responses of fluorescent probes F2 and F8 shown in Fig. 4
(Left) are predicted by the Markov chain model using the rate parameters discussed
above without any further fitting: they correspond well to the experimental data.

An additional parameter is needed to model branched tracks (Fig. 5(a)). We intro-
duce a failure rate for the anchorage blocking mechanism which is assumed to be the
same for all junctions. We infer a failure rate of 30% by fitting to the results of the
single-layer branched-track experiment illustrated in Fig. 5 [14].

3.1 Model results

Having used experiments on straight tracks and with a single layer of branching to de-
termine the parameters of the model, we use the two-layer junction experiments shown
in Fig. 5(c) to evaluate its quality. The model captures essential features of the walker
behaviour and is reasonably well aligned with experimental data. In the model, not all
walkers reach an absorbing anchorage by time T = 200min, although the predicted
quenching is much higher than observed. The reason for this discrepancy is not easily
determined and motivates further study.

We exercise the model by model checking them against temporal logic queries
aimed at quantifying the reliability and performance of the computation. We note that
not all the walkers that finish actually do quench the intended signal. In both the model
and the experiments we can identify a difference between paths that follow the side
of the track (paths LL and RR), and paths that enter the interior (paths RL and LR):

5 The cutting rate for enzymatic activity was measured at 0.17s−1, for which the enzyme bind-
ing to the DNA is considered not a rate limiting step [3].



Single layer Single layer 2-Layer 2-Layer Small 2-layer
Experiment Model Experiment Model Model

% R R2 L/R R R2 L/R RR RL LR LL RR RL LR LL RR RL LR LL
Finishes 65 56 56 97 96 92 33 40 22 33 90 89 89 90 94 92 94 92
Correct 76 87 50 78 85 50 70 65 55 76 77 74 74 77 78 78 78 78
Deadlock .081 .16 .0064 1.0 1.7 1.7 1.1 0.0 0.0 0.0 0.0
Steps 7.1 7.0 6.6 11.7 11.8 11.8 11.7 5.1 5.1 5.1 5.1

Fig. 5. Top: Track topology for single-layer (a) and double-layer (c,d) decision tracks. Initial in-
dicates the initial anchorage, Final indicates absorbing anchorages, and L, L’, R and R’ indicate
anchorages that can be blocked by input. Coloured circles (b) indicate the range of interaction
of the walker to scale. Bottom: Experimental results [14] compared with results from the model.
Single layer track: R means a single blockade on the left, R2 means a two-anchorage blockade on
the left, L/R means single blockades on both the left and right. Double layer track: RL means an-
chorages labelled L and R’ are blocked, so that the walker goes right on the first decision, and left
on the second. Each blockade is of two consecutive anchorages. All properties are given at time
T = 200 min. Finishes, P=?[F

[T,T ] finished ], is the probability that a walker quenches any fluo-
rophore by time T ; Correct, P=?[F

[T,T ](“finished-correct”|“finished”)], is the probability that a
finished walker quenches the correct fluorophore by time T ; Deadlock, P=?[F

[T,T ] deadlock ], is
the probability for the walker to get stuck prematurely by time T , with no intact anchorage within
reach; and Steps, R=? (steps) [C≤T ], indicates the expected number of steps taken by time T .

the probability of a correct outcome for the side paths is greater. This is explained by
leakage transitions between neighbouring paths, for example, see the red dotted line in
Fig. 5(d). Walkers on an interior path can leak to both sides, but a path that follows the
side can only leak to one side. This effect can also be shown by inspecting paths. By



Small track Normal track Large track Single block Triple block
% TT TF FT FF TT TF FT FF TT TF FT FF TT TF FT FF TT TF FT FF
Finishes 94 92 94 92 93 89 92 90 85 84 85 84 92 92 92 92 86 94 86 94
Correct 64 63 64 63 71 68 71 68 70 70 70 70 60 60 60 60 76 72 76 71
Deadlock 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 1.4 1.7 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Steps 5.8 5.9 5.8 5.9 7.8 7.6 7.8 7.6 11.0 11.6 11.0 11.6 8.9 8.5 8.9 8.5 7.7 6.9 7.7 6.9

Fig. 6. Performance analysis for a logic track expressing the XOR formula (X ⊕ Y ). Properties
as in Fig. 5.

using the property P=?[ correct-path U≤T finished-correct ], which denotes the proba-
bility that a walker stays on the path until it quenches the correct fluorophore by time
T , we can reason about the likelihood of the walker deviating from the intended path.
For the double-layer track in Fig. 5(d), we infer that the probability of staying on the
intended path and reaching the absorbing anchorage within 200 minutes is 55% for
paths LR and RL, and 58% for paths LL and RR. This shows that walkers on interior
paths are indeed more likely to deviate from the intended path than walkers on paths
that follow the sides.

The double-layer track can be optimized by reducing the probability of leakage from
the intended path. By decreasing the proximity of off-path anchorages and reducing the
track length, both the proportion of walkers finishing and correctness are increased (see
Fig. 5(d)). The asymmetry between paths (LL, RR vs. LR, RL) also disappears.

Smaller tracks are not always better. In Fig. 6 several variants of a XOR-logic circuit
are shown. The ‘small’, ‘normal’ and ‘large’ variants all use a total of four blocker
strands per decision node. The large track is approximately as correct as the normal
sized track, but a lower proportion of walkers reach an absorbing anchorage. The small



track has a greater proportion of walkers that finish than the normal sized track, but it
is considerably less reliable. We note that the walker has a large range of interaction,
which causes leakage and affects the reliability of the computation.

We infer that larger circuits are more susceptible to deadlock, based on Fig. 5 and
6. Deadlock occurs when a walker is isolated on a non-absorbing anchorage with no
intact anchorage in range. From a computational standpoint deadlock is undesirable, as
it is impossible to differentiate a deadlocked process from a live process.

The performance of PRISM [8] depends on the model checking method. For small
tracks as in Fig. 4, verification by PRISM can be achieved using uniformisation with
a precision of 10−6 within 10ms on common hardware [1]. Properties for the single
layer circuit in Fig. 5 were model checked within 3s to a precision of < 10−6 using fast
adaptive uniformisation [6]. For the dual-layer track in the same figure, single-threaded
simulation of 105 paths, each of which is checked against the property, yields a 95%
confidence interval of size < 0.4% within 23s [1].

4 Conclusions

The capability for an autonomous DNA walker to navigate a programmable track has
been recently demonstrated [14]. We have considered the potential for this system to
implement DNA walker ‘circuits’. Working from experimental observations, we have
developed a simple model that explains the influence of track architecture, blockade
failure and stepping characteristics on the reliability and performance of walker cir-
cuits. The model can be further extended as more detailed experimental measurements
become available. Model checking enables analysis of path properties and quantitative
measures such as the expected number of steps, which cannot be established using tra-
ditional ODE frameworks. A major advantage of our approach is that circuit designs
can be manipulated to study the properties of variant architectures.

We have shown that walker circuits can be designed to evaluate any Boolean func-
tion. In the experimental system we have considered, paths within a circuit can only
be joined under specific conditions, resulting in a number of theoretical consequences.
One motivation for implementing circuits with a DNA walker system, instead of a DNA
strand displacement system (DSD), is the potential for faster reaction times due to spa-
tial locality. However, the walker system we have considered has severely limited po-
tential for parallel circuit evaluation using multiple walkers. As this is not an issue in
a DSD, it is the case that this walker system requires exponentially more time to com-
pute certain Boolean functions than a corresponding DSD. This is not necessarily true
of all walker systems. The problem arises in the system under consideration due to the
undirected nature of the tracks that are traversed by a walker.

Another autonomous walker system with directed tracks has been demonstrated [16]
and, in principle, could be extended to have programmable (directed) tracks. In addition
to implementing circuits that could be evaluated efficiently by many walkers in paral-
lel, such a system could also benefit from well established design techniques to im-
prove overall circuit reliability [9]. Furthermore, current walker technology ‘destroys’
the track that is traversed. New mechanisms that can either replenish the track, or can
avoid ‘destroying’ it, will lead to reusable circuits. Finally, it would be interesting to ex-



plore the information processing capabilities of DNA walkers beyond circuit evaluation
and the potential for multiple interacting walkers to exhibit emergent behaviour.
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