Skip to main content

Advertisement

Log in

Andean Condor Algorithm for cell formation problems

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

This paper proposes a novel population based optimization algorithm called Andean Condor Algorithm (ACA) for solving cell formation problems. The ACA metaheuristic is inspired by the movement pattern of the Andean Condor when it searches for food. This pattern of movement corresponds to the flight distance traveled by the Andean Condor from its nest to the place where food is found. This distance varies depending on the seasons of the year. The ACA metaheuristic presents a balance of its population through a performance indicator based on the average quality of the population’s fitness. This balance determines the number of Andean Condors that will perform an exploration or intensification movements. ACA metaheuristics have a flexible design. It allows to easily integrate specific heuristics according to the optimization problem to be solved. Two types of computational experiments have been performed. According to the results obtained it has been possible to determine that ACA is an algorithm with an outstanding RPD% in relation to the algorithms BAT, MBO and PSO, robust and with a convergence which tends not to be trapped in the local optimums. Besides, according to the non-parametric multiple comparison, results have been obtained in which the ACA metaheuristic has significant differences in relation to the BAT, MBO and PSO algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Almonacid B (2018a) Appendix: Andean Condor Algorithm for cell formation problems. https://doi.org/10.6084/m9.figshare.5805360. https://figshare.com/s/ed10f7ae1739e21ea352. Accessed 21 Jan 2018

  • Almonacid B (2018b) Dataset: Andean Condor Algorithm for cell formation problems. https://doi.org/10.6084/m9.figshare.5808780. https://figshare.com/s/b6dfee83cd7d619339ce. Accessed 21 Jan 2018

  • Almonacid B, Aspée F, Soto R, Crawford B, Lama J (2016) Solving manufacturing cell design problem using modified binary firefly algorithm and Egyptian vulture optimization algorithm. IET Software, London

    Google Scholar 

  • Asktn RG, Subramantan SP (1987) A cost-based heuristic for group technology configuration. Int J Prod Res 25(1):101–113

    Article  Google Scholar 

  • Badgerow JP, Hainsworth FR (1981) Energy savings through formation flight? a re-examination of the vee formation. J Theor Biol 93(1):41–52

    Article  Google Scholar 

  • Boctor F (1991a) A linear formulation of the machine-part cell formation problem. Int J Prod Res 29(2):343–356

    Article  Google Scholar 

  • Boctor FF (1991b) A jinear formulation of the machine-part cell formation problem. Int J Prod Res 29(2):343–356

    Article  Google Scholar 

  • Boe WJ, Cheng CH (1991) A close neighbour algorithm for designing cellular manufacturing systems. Int J Prod Res 29(10):2097–2116

    Article  MATH  Google Scholar 

  • Breves C (2008) Plumaje de color anormal en Cóndor Andino (Vultur gryphus) en Chile central. Abnormal plumage color in Andean Condor (Vultur gryphus) in central Chile. Boletin Chileno de Ornitología 14(1):52–55

    Google Scholar 

  • Carrie A (1973) Numerical taxonomy applied to group technology and plant layout. Int J Prod Res 11(4):399–416

    Article  Google Scholar 

  • Chan H, Milner D (1982) Direct clustering algorithm for group formation in cellular manufacture. J Manuf Syst 1(1):65–75

    Article  Google Scholar 

  • Chandrasekar C et al (2013) An optimized approach of modified bat algorithm to record deduplication. Int J Comput Appl 62(1):10–15

    Google Scholar 

  • Chandrasekharan MP, Rajagopalan R (1986a) An ideal seed non-hierarchical clustering algorithm for cellular manufacturing. Int J Prod Res 24(2):451–463

    Article  MATH  Google Scholar 

  • Chandrasekharan M, Rajagopalan R (1986b) Modroc: an extension of rank order clustering for group technology. Int J Prod Res 24(5):1221–1233

    Article  Google Scholar 

  • Chandrasekharan M, Rajagopalan R (1987) Zodiac-an algorithm for concurrent formation of part-families and machine-cells. Int J Prod Res 25(6):835–850

    Article  MATH  Google Scholar 

  • Chandrasekharan M, Rajagopalan R (1989) Groupabil1ty: an analysis of the properties of binary data matrices for group technology. Int J Prod Res 27(6):1035–1052

    Article  Google Scholar 

  • Crawford B, Soto R, Zuñiga G, Monfroy E, Paredes F (2014) Modeling manufacturing cell design problems: Cp vs mh. In: International conference on human–computer interaction. Springer, pp. 498–502

  • Donázar J, Feijóo JE (2002) Social structure of Andean Condor roosts: influence of sex, age, and season. The Condor 104(4):832

    Article  Google Scholar 

  • Duman E, Uysal M, Alkaya AF (2012) Migrating birds optimization: a new metaheuristic approach and its performance on quadratic assignment problem. Inf Sci 217:65–77

    Article  MathSciNet  Google Scholar 

  • Durán O, Rodriguez N, Consalter LA (2010) Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Syst Appl 37(2):1563–1567

    Article  Google Scholar 

  • Fister I, Rauter S, Yang XS, Ljubič K (2015) Planning the sports training sessions with the bat algorithm. Neurocomputing 149:993–1002

    Article  Google Scholar 

  • Gaing ZL (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):1187–1195

    Article  Google Scholar 

  • Gao X, Alvo M (2008) Nonparametric multiple comparison procedures for unbalanced two-way layouts. J Stat Plan Inference 138(12):3674–3686

    Article  MathSciNet  MATH  Google Scholar 

  • Gao X, Alvo M, Chen J, Li G (2008) Nonparametric multiple comparison procedures for unbalanced one-way factorial designs. J Stat Plan Inference 138(8):2574–2591

    Article  MathSciNet  MATH  Google Scholar 

  • Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods. Wiley, New York

    MATH  Google Scholar 

  • Hummel D, Beukenberg M (1989) Aerodynamische interferenzeffekte beim formationsflug von vögeln. Journal für Ornithologie 130(1):15–24

    Article  Google Scholar 

  • Kennedy J (2011) Particle swarm optimization. In: Sammut C, Webb G (eds) Encyclopedia of machine learning. Springer, Berlin, pp 760–766

    Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, 1995. Proceedings, vol 4, pp. 1942–1948

  • King JR (1980) Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm. Int J Prod Res 18(2):213–232

    Article  MathSciNet  Google Scholar 

  • King JR, Nakornchai V (1982) Machine-component group formation in group technology: review and extension. Int J Prod Res 20(2):117–133

    Article  Google Scholar 

  • Kumar KR, Vannelli A (1986) Strategic subcontracting for efficient disaggregated manufacturing. BEBR faculty working paper no. 1252

  • Kumar KR, Kusiak A, Vannelli A (1986) Grouping of parts and components in flexible manufacturing systems. Eur J Oper Res 24(3):387–397

    Article  MATH  Google Scholar 

  • Kusiak A, Cho M (1992) Similarity coefficient algorithms for solving the group technology problem. Int J Prod Res 30(11):2633–2646

    Article  Google Scholar 

  • Kusiak A, Chow WS (1987) Efficient solving of the group technology problem. J Manuf Syst 6(2):117–124

    Article  Google Scholar 

  • Lambertucci SA, Trejo A, Di Martino S, Sánchez-zapata JA, Donázar JA, Hiraldo F (2009) Spatial and temporal patterns in the diet of the Andean condor: ecological replacement of native fauna by exotic species. Anim Conserv 12(4):338–345

    Article  Google Scholar 

  • Lemma TA, Hashim FBM (2011) Use of fuzzy systems and bat algorithm for exergy modeling in a gas turbine generator. In: IEEE colloquium on humanities, science and engineering (CHUSER), 2011. IEEE, pp. 305–310

  • Lissaman P, Shollenberger CA (1970) Formation flight of birds. Science 168(3934):1003–1005

    Article  Google Scholar 

  • McCormick WT Jr, Schweitzer PJ, White TW (1972) Problem decomposition and data reorganization by a clustering technique. Oper Res 20(5):993–1009

    Article  MATH  Google Scholar 

  • McGahan J (1973) Flapping flight of the Andean condor in nature. J Exp Biol 58:239–253

    Google Scholar 

  • Mosier C, Taube L (1985a) The facets of group technology and their impacts on implementation-a state-of-the-art survey. Omega 13(5):381–391

    Article  Google Scholar 

  • Mosier C, Taube L (1985b) Weighted similarity measure heuristics for the group technology machine clustering problem. Omega 13(6):577–579

    Article  Google Scholar 

  • Naveda-Rodríguez A et al (2016) Andean Condor (Vultur gryphus) in Ecuador: geographic distribution, population size and extinction risk. PLOS One 11(3):e0151,827

    Article  Google Scholar 

  • Nethercote N, Stuckey PJ, Becket R, Brand S, Duck GJ, Tack G (2007) Minizinc: towards a standard cp modelling language. In: Bessière C (ed) Principles and practice of constraint programming—CP 2007. Springer, Berlin, Heidelberg, pp 529–543

    Chapter  Google Scholar 

  • Niroomand S, Hadi-Vencheh A, Şahin R, Vizvari B (2015) Modified migrating birds optimization algorithm for closed loop layout with exact distances in flexible manufacturing systems. Expert Syst Appl 42:6586–6597

    Article  Google Scholar 

  • Pan QK, Dong Y (2014) An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation. Inf Sci 277:643–655

    Article  MathSciNet  MATH  Google Scholar 

  • Park JB, Lee KS, Shin JR, Lee KY (2005) A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Trans Power Syst 20(1):34–42

    Article  Google Scholar 

  • Pavez EF (2008) Patrón de movimiento de dos cóndores andinos vultur gryphus (aves: Cathartidae) en los andes centrales de chile y argentina. Boletín Chileno de Ornitología 20((1–2)):1–12

    Google Scholar 

  • Rayner J (1979) A new approach to animal flight mechanics. J Exp Biol 80(1):17–54

    Google Scholar 

  • Reddy VU, Manoj A (2012) Optimal capacitor placement for loss reduction in distribution systems using bat algorithm. IOSR J Eng 2(10):23–27

    Article  Google Scholar 

  • Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propag 52(2):397–407

    Article  MathSciNet  MATH  Google Scholar 

  • Royston JP (1982a) An extension of Shapiro and Wilk’s W test for normality to large samples. J R Stat Soc Ser C (Appl Stat) 2:115–124

    MATH  Google Scholar 

  • Royston JP (1982b) Algorithm as 181: the w test for normality. J R Stat Soc Ser C (Appl Stat) 31(2):176–180

    Google Scholar 

  • Royston P (1992) Approximating the Shapiro–Wilk W-test for non-normality. Stat Comput 2(3):117–119

    Article  Google Scholar 

  • Royston P (1995) Remark as r94: a remark on algorithm as 181: the w-test for normality. J R Stat Soc Ser C (Appl Stat) 44(4):547–551

    Google Scholar 

  • Salman A, Ahmad I, Al-Madani S (2002) Particle swarm optimization for task assignment problem. Microprocessors Microsyst 26(8):363–371

    Article  Google Scholar 

  • Seifoddini H (1989) A note on the similarity coefficient method and the problem of improper machine assignment in group technology applications. Int J Prod Res 27(7):1161–1165

    Article  Google Scholar 

  • Seifoddini H, Wolfe PM (1986) Application of the similarity coefficient method in group technology. IIE Trans 18(3):271–277

    Article  Google Scholar 

  • Selvakumar AI, Thanushkodi K (2007) A new particle swarm optimization solution to nonconvex economic dispatch problems. IEEE Trans Power Syst 22(1):42–51

    Article  Google Scholar 

  • Shen L, Asmuni H, Weng F (2014) A modified migrating bird optimization for university course timetabling problem. Jurnal Teknologi 72(1):89–96

    Google Scholar 

  • Soto R, Kjellerstrand H, Durán O, Crawford B, Monfroy E, Paredes F (2012a) Cell formation in group technology using constraint programming and boolean satisfiability. Expert Syst. Appl. 39(13):11423–11427

    Article  Google Scholar 

  • Soto R, Kjellerstrand H, Gutiérrez J, López A, Crawford B, Monfroy E (2012b) Solving manufacturing cell design problems using constraint programming. In: International conference on industrial, engineering and other applications of applied intelligent systems. Springer, pp. 400–406

  • Soto R, Crawford B, Almonacid B, Paredes F (2015a) A migrating birds optimization algorithm for machine-part cell formation problems. In: Advances in artificial intelligence and soft computing. pp. 270–281, Springer

  • Soto R, Crawford B, Almonacid B, Paredes F (2015b) A migrating birds optimization algorithm for machine-part cell formation problems. In: Mexican international conference on artificial intelligence. Springer, pp. 270–281

  • Soto R, Crawford B, Vega E, Paredes, F (2015c) Solving manufacturing cell design problems using an artificial fish swarm algorithm. In: Mexican international conference on artificial intelligence. Springer, pp. 282–290

  • Soto R, Crawford B, Alarcón A, Zec C, Vega E, Reyes V, Araya I, Olguín E (2016a) Solving manufacturing cell design problems by using a bat algorithm approach. In: International conference in swarm intelligence. Springer, pp. 184–191

  • Soto R, Crawford B, Almonacid B (2016b) Efficient leader exchange for migrating birds optimization when solving machine-part cell formation problems. In: 11th Iberian conference on information systems and technologies (CISTI), 2016. IEEE, pp. 1–7

  • Soto R, Crawford B, Almonacid B, Paredes F (2016c) Efficient parallel sorting for migrating birds optimization when solving machine-part cell formation problems. Sci Program 2016:21

    Google Scholar 

  • Soto R, Crawford B, Carrasco C, Almonacid B, Reyes V, Araya I, Misra S, Olguín E (2016d) Solving manufacturing cell design problems by using a dolphin echolocation algorithm. In: International conference on computational science and its applications. Springer, pp. 77–86

  • Soto R, Crawford B, Castillo C, Paredes F (2016e) Solving the manufacturing cell design problem via invasive weed optimization. In: Artificial intelligence perspectives in intelligent systems. Springer, pp. 115–126

  • Soto R, Crawford B, Lama J, Almonacid B (2016f) A firefly algorithm to solve the manufacturing cell design problem. In: 11th Iberian conference on information systems and technologies (CISTI), 2016. IEEE, pp. 1–7

  • Soto R, Crawford B, Vega E, Johnson F, Paredes F (2016g) Solving manufacturing cell design problems using a shuffled frog leaping algorithm. In: The 1st international conference on advanced intelligent system and informatics (AISI2015), 28–30 Nov 2015, Beni Suef, Egypt. Springer, pp. 253–261

  • Speziale KL, Lambertucci SA, Olsson O (2008) Disturbance from roads negatively affects Andean condor habitat use. Biol Conserv 141(7):1765–1772

    Article  Google Scholar 

  • Srinlvasan G, Narendran T, Mahadevan B (1990) An assignment model for the part-families problem in group technology. Int J Prod Res 28(1):145–152

    Article  Google Scholar 

  • Stanfel LE (1985) Machine clustering for economic production. Eng Costs Prod Econ 9(1):73–81

    Article  Google Scholar 

  • Stuckey PJ, Feydy T, Schutt A, Tack G, Fischer J (2014) The MiniZinc challenge 2008–2013. AI Mag 35(2):55–60

    Article  Google Scholar 

  • Tsai PW, Pan JS, Liao BY, Tsai MJ, Istanda V (2012) Bat algorithm inspired algorithm for solving numerical optimization problems. In: Chang G (ed) Applied mechanics and materials, vol 148, pp. 134–137. Trans Tech Publ

  • Waghodekar P, Sahu S (1984) Machine-component cell formation in group technology: mace. Int J Prod Res 22(6):937–948

    Article  Google Scholar 

  • Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp. 65–74

  • Yang XS (2011) Bat algorithm for multi-objective optimisation. Int J Bio Inspir Comput 3(5):267–274

    Article  Google Scholar 

  • Yang XS, He X (2013) Bat algorithm: literature review and applications. Int J Bio Inspir Comput 5(3):141–149

    Article  Google Scholar 

  • Yang XS, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

  • Zhang JW, Wang GG (2012) Image matching using a bat algorithm with mutation. In: Du Z, Liu B (eds) Applied mechanics and materials, vol 203, pp. 88–93. Trans Tech Publ

  • Zhang B, Pan Q, Gao L, Zhang X, Sang H, Li J (2017) An effective modified migrating birds optimization for hybrid flowshop scheduling problem with lot streaming. Appl Soft Comput 52:14–27

    Article  Google Scholar 

Download references

Acknowledgements

Boris Almonacid is supported by Animal Behavior Society, USA (Developing Nations Research Awards 2016); by Postgraduate Grant Pontificia Universidad Católica de Valparaíso, Chile (VRIEA 2016 and INF-PUCV 2015) and by Ph.D (h.c) Sonia Alvarez, Chile. Ricardo Soto is supported by Grant CONICYT / FONDECYT / REGULAR / 1160455. Also, we thank the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Almonacid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almonacid, B., Soto, R. Andean Condor Algorithm for cell formation problems. Nat Comput 18, 351–381 (2019). https://doi.org/10.1007/s11047-018-9675-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-018-9675-0

Keywords