Skip to main content

Advertisement

Log in

Bonding calculus

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

We present the bonding calculus, a calculus in which it is easy to handle covalent bonds between molecules. Our purpose is to use bonding calculus to model the dynamics of the interactions in biochemical systems. We provide an operational semantics by means of a transition system, and use a known software platform to both simulate the chemical reactions described naturally in bonding calculus and verify their specific properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Avery OT, Goebel WF (1929) Chemoimmunological studies on conjugated carbohydrate-proteins: immunological specificity of synthetic sugar-protein antigens. J Exp Med 50:533–550

    Article  Google Scholar 

  • Behrmann G, David A, Larsen KG (2004) A tutorial on shape Uppaal. Lect Notes Comput Sci 3185:200–236

    Article  Google Scholar 

  • Bengtsson J, Yi W (2004) Timed automata: semantics, algorithms and tools. Lect Notes Comput Sci 3098:87–124

    Article  Google Scholar 

  • Cardelli L (2004) BioAmbients: an abstraction for biological compartments. Theor Comput Sci 325:141–167

    Article  MathSciNet  Google Scholar 

  • Chabrier-Rivier N, Fages F, Soliman S (2004) The biochemical abstract machine BIOCHAM. Lect Notes Comput Sci 3082:172–191

    Article  Google Scholar 

  • Chari RV, Miller ML, Widdison WC (2014) Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed 53:3796–3827

    Article  Google Scholar 

  • Ciobanu G, Rozenberg G (eds) (2004) Modelling in molecular biology. Natural computing series. Springer, Berlin

    Google Scholar 

  • Ciocchetta F, Hillston J (2008) Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. Electron Notes Theor Comput Sci 194:103–117

    Article  Google Scholar 

  • Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-based modelling of cellular signalling. Lect Notes Comput Sci 4703:17–41

    Article  Google Scholar 

  • Diamantis N, Banerji U (2016) Antibody-drug conjugates-an emerging class of cancer treatment. Br J Cancer 114:362–367

    Article  Google Scholar 

  • Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. Methods Mol Biol 500:113–67

    Article  Google Scholar 

  • Gasparini R, Panatto D (2011) Meningococcal glycoconjugate vaccines. Hum Vaccines 7:170–182

    Article  Google Scholar 

  • Gao Y, Sun ZY, Huang ZH, Chen PG, Chen YX, Zhao YF, Li YM (2014) Covalent bond or noncovalent bond: a supramolecular strategy for the construction of chemically synthesized vaccines. Chem A Eur J 20:13541–13546

    Article  Google Scholar 

  • Gotschlich EC, Liu TY, Artenstein MS (1969) Human immunity to the meningococcus. J Exp Med 129:1349–1365

    Article  Google Scholar 

  • Klugman KP, Rodgers GL (2017) The future of paediatric pneumococcal conjugate vaccines. Lancet Respir Med 5:605–606

    Article  Google Scholar 

  • Kuhn S, Ulidowski I (2018) Local reversibility in a calculus of covalent bonding. Sci Comput Program 151:18–47

    Article  Google Scholar 

  • Lees A, Puvanesarajah V, Frasch C (2008) Conjugation Chemistry. In: Siber G, Klugman K, Mäkelä P (eds) Pneumococcal Vaccines. ASM Press, Washington, DC, pp 163–174

    Chapter  Google Scholar 

  • Milner R (1999) Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Priami C (1995) Stochastic π-calculus. Comput J 38:578–589

    Article  Google Scholar 

  • Priami C, Quaglia P (2005) Beta binders for biological interactions. Lect Notes Bioinform 3082:20–33

    MathSciNet  MATH  Google Scholar 

  • Polakis P (2016) Antibody drug conjugates. Pharmacol Rev 68:3–19

    Article  Google Scholar 

  • Reddington SC, Howarth M (2015) Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr Opin Chem Biol 29:94–99

    Article  Google Scholar 

  • Regev A, Shapiro E (2004) The π-calculus as an abstraction for biomolecular systems. In: Ciobanu G, Rozenberg G (eds) Modelling in molecular biology, Natural computing series. Springer, Berlin, pp 219–266

    Chapter  Google Scholar 

  • Schneerson R, Barrera O, Sutton A, Robbins JB (1980) Preparation, characterization, and immunogenicity of haemophilus influenzae type b polysaccharide-protein conjugates. J Exp Med 152:361–376

    Article  Google Scholar 

  • Slovin SF, Ragupathi G, Fernandez C, Jefferson MP, Diani M, Wilton AS, Powell S, Spassova M, Reis C, Clausen H, Danishefsky S, Livingston P, Scher HI (2005) A bivalent conjugate vaccine in the treatment of biochemically relapsed prostate cancer. Vaccine 23:3114–3122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Aman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aman, B., Ciobanu, G. Bonding calculus. Nat Comput 17, 823–832 (2018). https://doi.org/10.1007/s11047-018-9709-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-018-9709-7

Keywords

Navigation