Abstract
Time-continuous models need to set a value of time-step to simulate a process using a computer. The assumed size of a time-step influences the computational performance. But not only a quick calculations is a criterion. The other one is the reliability of the simulation results. The discretization of time in computer simulation of pedestrian movement is considered in the paper. We consider a discrete-continuous approach which is becoming popular nowadays. Both aspects are investigated for the time-continuous SigmaEva pedestrian dynamics model. We use fundamental diagrams as a measure to estimate the simulation quality. It is shown that short and long time-steps are not reasonable.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Baglietto G, Parisi DR (2011) Continuous-space automaton model for pedestrian dynamics. Phys. Rev. E 83:056117. https://doi.org/10.1103/PhysRevE.83.056117
Bandini S, Rubagotti F, Vizzari G, Shimura K (2011) A cellular automata based model for pedestrian and group dynamics: Motivations and first experiments. In: Malyshkin V (ed) Parallel Computing Technologies. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 125–139
Blue VJ, Adler JL (2001) Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transport Res Part B: Methodol 35(3):293–312. https://doi.org/10.1016/S0191-2615(99)00052-1
Chattaraj U, Seyfried A, Chakroborty P (2009) Comparison of pedestrian fundamental diagram across cultures. Adv Complex Sys 12(03):393–405. https://doi.org/10.1142/S0219525909002209
Chraibi M, Seyfried A, Schadschneider A (2010) Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82:046111. https://doi.org/10.1103/PhysRevE.82.046111
Davidich M, Geiss F, Mayer HG, Pfaffinger A, Royer C (2013) Waiting zones for realistic modelling of pedestrian dynamics: A case study using two major German railway stations as examples. Transport Res Part C: Emerging Technol 37:210–222. https://doi.org/10.1016/j.trc.2013.02.016
Dridi M (2015) Simulation of high density pedestrian flow: a microscopic model. Open J Model Simulat 3:81–95. https://doi.org/10.4236/ojmsi.2015.33009
Geoerg P, Berchtold F, Gwynne S, Boyce K, Holl S, Hofmann A (2019) Engineering egress data considering pedestrians with reduced mobility. Fire Mater 43(7):759–781. https://doi.org/10.1002/fam.2736
Gravit M, Kirik E, Savchenko E (2021) Effect of design on the evacuation time for the colosseum of Rome. Construct Unique Buildings Struct 95:9504. https://doi.org/10.4123/CUBS.95.4
Gwynne SMV, Rosenbaum ER (2016) Employing the Hydraulic Model in Assessing Emergency Movement. 2115–2151. Springer New York, New York, NY . https://doi.org/10.1007/978-1-4939-2565-0_59
Hankin BD, Wright RA (1958) Passenger flow in subways. J Operat Res Soc 9(2):81–88. https://doi.org/10.1057/jors.1958.9
Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490. https://doi.org/10.1038/35035023
Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51:4282–4286. https://doi.org/10.1103/PhysRevE.51.4282
Khan SD (2019) Congestion detection in pedestrian crowds using oscillation in motion trajectories. Eng Applicat Artificial Intell 85:429–443. https://doi.org/10.1016/j.engappai.2019.07.009
Khan SD, Vizzari G, Bandini S (2016) A Computer Vision Tool Set for Innovative Elder Pedestrians Aware Crowd Management Support Systems. In: AI*AAL@AI*IA, 75–91
Kholshevnikov V, Shields T, Boyce K, Samoshin D (2008) Recent developments in pedestrian flow theory and research in Russia. Fire Safety J 43(2):108–118. https://doi.org/10.1016/j.firesaf.2007.05.005
Kirchner A, Klupfel H, Nishinari K, Schadschneider A, Schreckenberg M (2004) Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J Statist Mechan: Theory Exp 2004(10):P10011. https://doi.org/10.1088/1742-5468/2004/10/p10011
Kirchner A, Schadschneider A (2002) Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A: Statist Mechan Appl 312(1):260–276. https://doi.org/10.1016/S0378-4371(02)00857-9
Kirik E, Malyshev A, Popel E (2014) Fundamental diagram as a model input: Direct movement equation of pedestrian dynamics. In: Weidmann U, Kirsch U, Schreckenberg M (eds) Pedestrian and Evacuation Dynamics 2012. Springer International Publishing, Cham, pp 691–702
Kirik E, Malyshev A, Vitova T, Popel E, Kharlamov E (2018) Pedestrian movement simulation for stadiums design. IOP Conference Series: Materials Science and Engineering 456:012074. https://doi.org/10.1088/1757-899x/456/1/012074
Kirik E, Vitova T (2016) On formal presentation of update rules, density estimate and using floor fields in ca ff pedestrian dynamics model sigma.ca. In: S. El Yacoubi, J. Was, S. Bandini (eds.) Cellular Automata, pp. 435–445. Springer International Publishing, Cham . https://doi.org/10.1007/978-3-319-44365-2_43
Kirik E, Vitova T, Malyshev A (2019) Turns of different angles and discrete-continuous pedestrian dynamics model. Nat Comput 18:875–884. https://doi.org/10.1007/s11047-019-09764-4
Kirik E, Vitova T, Malyshev A, Popel E (2020) A conjunction of the discrete-continuous pedestrian dynamics model sigmaeva with fundamental diagrams. In: R. Wyrzykowski, E. Deelman, J. Dongarra, K. Karczewski (eds.) Parallel Processing and Applied Mathematics. 457–466. Springer International Publishing, Cham . https://doi.org/10.1007/978-3-030-43222-5_40
Kirik E, Vitova T, Malyshev A, Popel E, Kharlamov E, Moiseichenko V, Kalinin E, Smirnov N (2021) Computer simulation of pedestrian dynamics in the design and operation of stadiums. Construct Unique Build Struct 94:9401. https://doi.org/10.4123/CUBS.94.1
Kirik E, Yurgel’Yan T, Krouglov D (2011) On realizing the shortest time strategy in a ca ff pedestrian dynamics model. Cybernetics Syst 42(1):1–15. https://doi.org/10.1080/01969722.2011.532636
Kretz T (2019) An overview of fundamental diagrams of pedestrian dynamics . https://doi.org/10.13140/RG.2.2.30070.96326
Kuligowski ED (2016) Computer Evacuation Models for Buildings. 2152–2180. Springer New York, New York, NY . https://doi.org/10.1007/978-1-4939-2565-0_60
Mitsopoulou M, Dourvas N, Georgoudas IG, Sirakoulis GC (2020)Cellular automata model for crowd behavior management in airports. In: R. Wyrzykowski, E. Deelman, J. Dongarra, K. Karczewski (eds.) Parallel Processing and Applied Mathematics. 445–456. Springer International Publishing, Cham . https://doi.org/10.1007/978-3-030-43222-5_39
Nishinari K, Kirchner A, Namazi A, Schadschneider A (2003) Extended floor field ca model for evacuation dynamics. IEICE Transactions 87-D, 726–732
Ronchi E, Uriz FN, Criel X, Reilly P (2016) Modelling large-scale evacuation of music festivals. Case Studies in Fire Safety 5:11–19. https://doi.org/10.1016/j.csfs.2015.12.002
Schadschneider A, Seyfried A (2009) Validation of ca models of pedestrian dynamics with fundamental diagrams. Cybernet Syst 40(5):367–389. https://doi.org/10.1080/01969720902922400
Seitz MJ, Köster G (2012) Natural discretization of pedestrian movement in continuous space. Phys. Rev. E 86:046108. https://doi.org/10.1103/PhysRevE.86.046108
Seyfried A, Steffen B, Lippert T (2006) Basics of modelling the pedestrian flow. Physica A: Statist Mechan Applicat 368(1):232–238. https://doi.org/10.1016/j.physa.2005.11.052
Shimura K, Khan S, Bandini S, Nishinari K (2016) Simulation and evaluation of spiral movement of pedestrians: towards the tawaf simulator. J Cell Automata 11(4):275–284
Spearpoint M, MacLennan HA (2012) The effect of an ageing and less fit population on the ability of people to egress buildings. Safety Science 50(8), 1675–1684 . https://doi.org/10.1016/j.ssci.2011.12.019. Evacuation and Pedestrian Dynamics
Trivedi A, Pandey M (2020) Agent Based Modelling and Simulation to estimate movement time of pilgrims from one place to another at Allahabad Jn. Railway Station during Kumbh Mela-2019. Autonomous Agents and Multi-Agent Systems 34(1), 30 . https://doi.org/10.1007/s10458-020-09454-x
Vanumu LD, Ramachandra Rao K, Tiwari G (2017) Fundamental diagrams of pedestrian flow characteristics: a review. Eu Trans Res Rev 9(4):49. https://doi.org/10.1007/s12544-017-0264-6
Wang WL, Lo SM, Liu SB, Ma J (2015) On the use of a pedestrian simulation model with natural behavior representation in metro stations. Procedia Comput Sci 52:137–144. https://doi.org/10.1016/j.procs.2015.05.048
Weidmann U (1992) Transporttechnik der fussgänger. transporttechnische eigenschaften des fussgängerverkehrs (literaturauswertung). Tech. rep., Zürich. https://doi.org/10.3929/ethz-a-000687810
Zeng W, Nakamura H, Chen P (2014) A modified social force model for pedestrian behavior simulation at signalized crosswalks. Procedia -Soc Behavioral Sci 138:521–530. https://doi.org/10.1016/j.sbspro.2014.07.233
Zeng Y, Song W, Huo F, Vizzari G (2018) Modeling evacuation dynamics on stairs by an extended optimal steps model. Simulation Model Prac Theo 84:177–189. https://doi.org/10.1016/j.simpat.2018.02.001
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kirik, E., Vitova, T. Time discretization in the time-continuous pedestrian dynamics model SigmaEva. Nat Comput 21, 407–415 (2022). https://doi.org/10.1007/s11047-022-09894-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11047-022-09894-2
Keywords
- Pedestrian simulation
- Discrete-continuous model
- Fundamental diagram
- Flow rate
- Time discretization
- Time-step
- Person's size