Skip to main content

Advertisement

Log in

Bio-inspired modelling as a practical tool to manage giant panda population dynamics in captivity

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

The highly endangered giant panda (Ailuropoda melanoleuca) is the world’s most widely recognised conservation icon. Population dynamics models can get on track to a healthy population for giant pandas, and assess its development over time. This paper proposes a new way to study population dynamics of giant pandas in captivity by means of membrane computing, a bio-inspired computational paradigm based on processing multisets of objects within a cell structure, following a series of evolution rules. This framework is used to model the intrinsically stochastic real-life evolution processes of giant pandas, based on pedigree data. This is the first attempt to collect and analyse so complete source, and to investigate population dynamics of giant pandas based on them. Pedigree data consisting of the number of giant panda individuals per age are provided by Chengdu Research Base of Giant Panda Breeding of China. A special simulator has been developed to assist in the design and formal verification of the mathematical model presented. Particularly, the model feasibility, effectiveness, soundness and robustness have been validated by the simulator, which also enables decision-making based on the simulation results of conducted virtual experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alhazov A, Freund R, Ivanov S (2021) When catalytic P systems with one catalyst can be computationally complete. J Membr Comput 3(3):170–181

    Article  MathSciNet  MATH  Google Scholar 

  • Alhazov A, Leporati A, Manzoni L, Mauri G, Zandron C (2021) Alternative space definitions for P systems with active membranes. J Membr Comput 3(2):87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Aman B, Ciobanu G (2021) Travelling salesman problem in tissue P systems with costs. J Membr Comput 3(2):97–104

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen T, Elser JJ, Hessen DO (2004) Stoichiometry and population dynamics. Ecol Lett 7(9):884–900

    Article  Google Scholar 

  • Bera S, Ceterchi R, Sriram S, Subramanian KG (2022) Array P systems and pure 2D context-free grammars with independent mode of rewriting. J Membr Comput 4(1):11–20

    Article  MathSciNet  Google Scholar 

  • Buiu C, Florea AG (2019) Membrane computing models and robot controller design, current results and challenges. J Membr Comput 1(4):262–269

    Article  MathSciNet  MATH  Google Scholar 

  • Cardona M, Colomer MA, Pérez-Jiménez MJ, Sanuy D, Margalida A (2009) Modeling ecosystems using P systems: the bearded vulture, a case study. In: Corne D, Frisco P, Păun G, Rozenberg G, Salomaa A (eds) Membrane computing. Springer, Berlin, pp 137–156

    Chapter  Google Scholar 

  • Cardona M, Colomer MA, Margalida A, Palau A, Pérez-Hurtado I, Pérez-Jiménez MJ et al (2010) A computational modeling for real ecosystems based on P systems. Nat Comput 10(1):39–53

    Article  MATH  Google Scholar 

  • Cardona M, Colomer MA, Pérez-Jiménez MJ et al (2008) Modeling ecosystems using p systems: The bearded vulture, a case study. In International Workshop on Membrane Computing, 137-156

  • Carter J, Ackleh AS, Leonard BP, Wang H (1999) Giant panda (Ailuropoda melanoleuca) population dynamics and bamboo (subfamily Bambusoideae) life history: a structured population approach to examining carrying capacity when the prey are semelparous. Ecol Model 123(2–3):207–223

    Article  Google Scholar 

  • Colomer MA, Lavín S, Marco I, Margalida A, Pérez-Hurtado I, Pérez-Jiménez MJ et al (2011) Modeling population growth of Pyrenean Chamois (Rupicapra p. pyrenaica) by using P systems. Lecture Notes in Computer Science. 08/2010;6501:144-159

  • Colomer MA, Margalida A, Sanuy D, Pérez-Jiménez MJ (2011) A bio-inspired computing model as a new tool for modeling ecosystems: the avian scavengers as a case study. Ecol Model 222(1):33–47

    Article  Google Scholar 

  • Colomer MA, Margalida A, Pérez-Jiménez MJ (2013) Population Dynamics P System (PDP) Models: a standardized protocol for describing and applying novel bio-inspired computing tools. PLoS ONE 04(4):e60698

    Article  Google Scholar 

  • Colomer MA, Margalida A, Valencia L, Palau A (2014) Application of a computational model for complex fluvial ecosystems: the population dynamics of zebra mussel Dreissena polymorpha as a case study. Ecol Complex 12(20):116–126

    Article  Google Scholar 

  • Deng X, Zhang G (2022) Reducer lubrication optimization with an optimization spiking neural P system. Inf Sci 604:28–44

    Article  Google Scholar 

  • Dong J, Zhang G, Luo B, Yang Q et al (2022) A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems. Inf Sci 596:1–14

    Article  Google Scholar 

  • García-Quismondo M, Gutiérrez-Escudero R, del Amor MAM, Orejuela-Pinedo E, Pérez-Hurtado I (2009) P-Lingua 2.0: a software framework for cell-like P systems. Int J Comput Commun Control 4(3):234–243

    Article  Google Scholar 

  • García-Quismondo M, Hintz WD, Schuler MS, Relyea RA (2021) Modeling diel vertical migration with membrane computing. J Membr Comput 3(1):35–50

    Article  MathSciNet  MATH  Google Scholar 

  • Gazdag Z, Hajagos K, Iván S (2021) On the power of P systems with active membranes using weak non-elementary membrane division. J Membr Comput 3(4):258–269

    Article  MathSciNet  MATH  Google Scholar 

  • Gui ZJ, Song GH, Chen YX (2012a) Computer numerical simulation of diffusion on the giant panda population dynamics models among small areas. Procedia Environmental Sciences (18th Biennial ISEM Conference on Ecological Modelling for Global Change and Coupled Human and Natural System). 13:2085 - 2090

  • Gui ZJ, Song GH, Chen YX (2012b) Simulation study on giant panda population dynamics model with due consideration for deforestation. Procedia Environmental Sciences (18th Biennial ISEM Conference on Ecological Modelling for Global Change and Coupled Human and Natural System). 13:2091 - 2097

  • Guo J, Chen Y, Hu J (2002a) Population viability analysis of giant pandas in the Yele Nature Reserve. J Nat Conserv 10(1):35–40

    Article  Google Scholar 

  • Guo J, Chen Y, Zhang H, Chen G, Hu J, Wu Y (2002b) A mathematical model for the population of giant pandas and bamboo in Yele Nature Reserve of Xiangling Mountains. J Nat Conserv 10(2):69–74

    Article  Google Scholar 

  • Huang Z, Zhang G, Qi D, Rong H (2017) Application of probabilistic membrane systems to model giant panda population data. Comput Syst Appl 26(8):252–256

    Google Scholar 

  • Jiang H, Hu J (2010) Population viability analysis for the giant panda in Baoxing county Sichuan. Sichuan J Zool 29(2):161–165

    Google Scholar 

  • Johnson CJ, Gillingham MP (2005) An evaluation of mapped species distribution models used for conservation planning. Environ Conserv 6:117–128

    Article  Google Scholar 

  • Kong L, Xu W, Xiao Y, Pimm SL, Shi H, Ouyang Z (2021) Spatial models of giant pandas under current and future conditions reveal extinction risks. Nat Ecol Evol 5(9):1309–1316

    Article  Google Scholar 

  • Linderman MA, An L, Bearer S, He G, Ouyang Z, Liu J (2005) Modeling the spatio-temporal dynamics and interactions of households, landscapes, and giant panda habitat. Ecol Model 183(1):47–65

    Article  Google Scholar 

  • Liu J, Linderman M, Ouyang Z, An L, Yang J, Zhang H (2001) Ecological degradation in protected areas: the case of wolong nature reserve for giant pandas. Science 292(5514):98–101

    Article  Google Scholar 

  • Loucks CJ, Lü Z, Dinerstein E, Wang H, Olson DM, Zhu C et al (2001) Giant pandas in a changing landscape. Science 294(5546):1465

    Article  Google Scholar 

  • Margalida A, Colomer MA (2012) Modelling the effects of sanitary policies on European vulture conservation. Sci Rep 2(753):1–7

    Google Scholar 

  • Meng Z, Guohua S (2016) The effect of diffusion loss on the time-varying giant Panda population. Int J Biomath 9(04):1650062

    Article  MathSciNet  MATH  Google Scholar 

  • Păun G (2000) Computing with Membranes. J Comput Syst Sci 61(1):108-143. And Turku Center for Computer Science-TUCS Report No 208

  • Paun G, Rozenberg G, Salomaa A (2010) The Oxford Handbook of Membrane Computing. Oxford University Press. p. xiv+664

  • Pérez-Hurtado I (2009) P-Lingua webpage. http://www.p-lingua.org

  • Pérez-Hurtado I, Valencia-Cabrera L, Pérez-Jiménez MJ, Colomer MA, Riscos-Núñez A. MeCoSim: (2010) A general purpose software tool for simulating biological phenomena by means of P Systems. IEEE Fifth International Conference on Bio-inpired Computing: Theories and Applications (BIC-TA 2010). I:637-643

  • Qi D, Hu Y, Gu X, Li M, Wei F (2009) Ecological niche modeling of the sympatric giant and red pandas on a mountain-range scale. Biodivers Conserv 18(8):2127–2141

    Article  Google Scholar 

  • Qi D, Zhang S, Zhang Z, Hu Y, Yang X, Wang H et al (2011) Different habitat preferences of male and female giant pandas. J Zool 285(3):205–214

    Article  Google Scholar 

  • Qi D, Hu Y, Gu X, Yang X, Yang G, Wei F (2012a) Quantifying landscape linkages among giant panda subpopulations in regional scale conservation. Integr Zool 7(2):165–174

    Article  Google Scholar 

  • Qi D, Zhang S, Zhang Z, Hu Y, Yang X, Wang H et al (2012b) Measures of giant panda habitat selection across multiple spatial scales for species conservation. J Wildl Manag 76(5):1092–1100

    Article  Google Scholar 

  • Ran J, Du B, Yue B (2009) Conservation of the Endangered giant panda Ailuropoda melanoleuca in China: successes and challenges. Oryx 4(43):176–178

    Article  Google Scholar 

  • Song B, Luo X, Valencia-Cabrera L, Zeng X (2020) The computational power of cell-like P systems with one protein on membrane. J Membr Comput 2(4):332–340

    Article  MathSciNet  MATH  Google Scholar 

  • Sun X, Long Z, Jia J (2021) A multi-scale Maxent approach to model habitat suitability for the giant pandas in the Qionglai mountain, China. Global Ecol Conserv 30:e01766

    Article  Google Scholar 

  • Swaisgood RR, Wei F, Wildt DE, Kouba AJ, Zhang Z (2009) Giant panda conservation science: how far we have come. Biol Lett

  • Swaisgood RR, Wei F, Mcshea WJ, Wildt DE, Kouba AJ, Zhang Z (2011) Can science save the giant panda (Ailuropoda melanoleuca)? Unifying science and policy in an adaptive management paradigm. Integr Zool 6(3):290–296

    Article  Google Scholar 

  • Tanentzap AJ, Walker S, Theo Stephens RT, Lee WG (2012) A framework for predicting species extinction by linking population dynamics with habitat loss. Conserv Lett 5:149–156

    Article  Google Scholar 

  • Tian H (2018) Modeling of giant panda ecosystem based on population dynamics P systems. Southwest Jiaotong University, MA thesis

  • Tong Y (2019) Modeling of giant panda population characteristics based on multi-environment membrane systems. Southwest Jiaotong University, MA thesis

  • Unglaub B, Steinfartz S, Drechsler A, Schmidt BR (2015) Linking habitat suitability to demography in a pond-breeding amphibian. Front Zool 12(1):1–9

    Article  Google Scholar 

  • Valencia-Cabrera L (2010) MeCoSim web site. http://www.p-lingua.org/mecosim

  • Van Nes EH, Scheffer M (2005) A strategy to improve the contribution of complex simulation models to ecological theory. Ecol Modell 185(24):153–164

    Google Scholar 

  • Xiangyun S, Guo-hua S (2013) A mathematical model with pulse effect for three populations of the giant panda and two kinds of bamboo. Sci World J 2013:1–9

    Google Scholar 

  • Zhan X, Tao Y, Li M, Zhang Z, Benoit G, Chen Y et al (2009) Accurate population size estimates are vital parameters for conserving the giant panda. Ursus 20(1):56–62

    Article  Google Scholar 

  • Zhan X, Li M, Zhang Z, Goossens B, Chen Y, Wang H et al (2015a) Molecular censusing doubles giant panda population estimate in a key nature reserve. Curr Biol 16(12):R451–R452

    Article  Google Scholar 

  • Zhang GX, Cheng JX, Wang XY, Zhu J (2015b) Membrane Computing: Theory and Applications. Science Press

  • Zhang GX, Pérez-Jiménez MJ, Gheorghe M (2017) Real-life applications with membrane computing, Springer

  • Zhang GX, Pérez-Jiménez MJ (2021) Riscos-Nu\({\tilde{n}}\)ez A, Verlan S, Konur S, Hinze T, Gheorghe M, Implementations, Springer, Membrane Computing Models

  • Zhang G, Shang Z, Verlan S, Martínez-Del-Amor MA (2020) An overview of hardware implementation of membrane computing models. ACM Comput Surv 53(4):1–38

    Google Scholar 

  • Zhang G, Rong H, Paul P, He Y, Neri F, Péez-Jiménez MJ (2021) A complete arithmetic calculator constructed from spiking neural P systems and its application to information fusion. Int J Neural Syst 31(1):1–17

    Article  Google Scholar 

  • Zhang G, Zhang X, Rong H, Paul P et al (2022) A layered spiking neural system for classification problems. Int J Neural Syst 2022:32. https://doi.org/10.1142/S012906572250023X

    Article  Google Scholar 

  • Zhou Z, Pan W (1997) Analysis of the viability of a giant panda population. J Appl Ecol 34(2):363–374

    Article  MathSciNet  Google Scholar 

  • Zhu L, Wu P, Zhang H (2008) Population viability analysis of giant pandas in the Xiaoxiangling Mountains. J China West Normal Univ 29(2):112–116

    Google Scholar 

  • Zhu M, Yang Q, Dong J, Zhang G et al (2021) An adaptive optimization spiking neural P system for binary problems. Int J Neur Syst 31(1):1–17. https://doi.org/10.1142/S0129065720500549

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61672437 and 61972324) and Sichuan Science and Technology Program (2022YFG0181). We also acknowledge the support of the research project TIN2017-89842-P (MABICAP), co-financed by Ministerio de Economía, Industria y Competitividad (MINECO) of Spain, through the Agencia Estatal de Investigación (AEI) and by Fondo Europeo de Desarrollo Regional (FEDER) of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gexiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1979 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, H., Duan, Y., Valencia-Cabrera, L. et al. Bio-inspired modelling as a practical tool to manage giant panda population dynamics in captivity. Nat Comput 22, 133–147 (2023). https://doi.org/10.1007/s11047-022-09903-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-022-09903-4

Keywords

Navigation